Dinh Duy Kha

Ph.D. Student @ Sungkyunkwan University, South Korea

🕠 kha-dinh | in | 🖫 | 🔽 khadinh@skku.edu

Introduction

I am a fifth-year Ph.D. candidate at Sungkyunkwan University, where I work with Prof. Hojoon Lee at the System Security Lab. My research sits at the intersection of operating system design and software security, with a current focus on software compartmentalization, practical defenses against side-channel attacks, and automated program analysis for software security. I'm particularly interested in how thoughtful architectural design can make systems inherently more secure.

Working Experiences

System Security Lab, Sungkyunkwan University

Suwon, South Korea

Graduate Student Researcher

2019 - Present

• Work on the development security of mechanisms that utilize modern hardware features.

VNG CORPORATION

Ho Chi Minh City, Vietnam

Software Engineering Intern

Jun 2018 - Jun 2019

• Develop and maintain backend APIs for the TalkTV streaming platform (now discontinued).

EDUCATION

SUNGYUNKWAN UNIVERSITY Ph.D. Candidate in System Security HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY B.S. in Computer Science

Suwon, South Korea 2019 - present Ho Chi Minh City, Vietnam 2014 - 2019

Projects

Practical OS-Level Objuscation of Confidential VMs Against Side-Channel Attacks

- Developed an OS-level memory page randomization technique that protects unmodified CVM workloads from side-channel attacks.
- Developed an adaptive randomization strategy that reacts to the attacker's temporal resolution.
- Ported the Unikraft unikernel to work inside AMD SEV-SNP confidential virtual machines, which is contributed to the open-sourced core Unikraft kernel.

Cryptographic Capabilities for Program Compartmentalization

- Designed an in-process cryptographic capability compartmentalization framework that leverages new ARM hardware features and evaluated its security.
- Developed LLVM compiler instrumentation to enforce its security policies on memory accesses.
- Developed a Linux kernel module to enforce capability-based fine-grained isolation on file objects.

Accelerating AddressSantizer in Rust

• Co-designed and formalized compiler analyses that identify potentially unsafe instructions in Rust.

Similation Framework for Processing-in-Memory (PIM)-Based Confidential Computing

- Used gem5 to develop a full-system simulation of the emerging PIM hardware.
- Implemented and evaluated security features that allow PIM to be used as an accelerator for confidential computing.

TEACHING

Graduate Teaching Assistant

- ESW4010: Special Topics on System Security (Fall 2021, Spring 2022, Fall 2022)
 - Developed an automated framework to deploy CTF challenges to docker containers.
 - Adapted the CTFd framework to make it more suitable for the classroom environment.
 - The framework is currently used to teach subsequence courses at https://ctf.skku.edu/.
- SWE2001: System Programming (Fall 2021)

PUBLICATION

- [1] **Duy, K. D.**, Kim, J., Lim, H., Lee, H., "IncognitOS: A Practical Unikernel Design for Full-System Obfuscation in Confidential Virtual Machines," in 2025 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA: IEEE Computer Society, May 2025, pp. 3860–3877. DOI: 10.1109/SP61157.2025.00222. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00222.
- [2] Cho, K., Kim, J., **Duy, K. D.**, Lim, H., Lee, H., "RustSan: Retrofitting AddressSanitizer for Efficient Sanitization of Rust," in 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA: USENIX Association, Aug. 2024, pp. 3729–3746, ISBN: 978-1-939133-44-1. [Online]. Available: https://www.usenix.org/conference/usenixsecurity24/presentation/cho-kyuwon.
- [3] **Duy, K. D.**, Cho, K., Noh, T., Lee, H., "Capacity: Cryptographically-Enforced In-Process Capabilities for Modern ARM Architectures," in *Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security*, ser. CCS '23, Copenhagen, Denmark: Association for Computing Machinery, 2023, pp. 874–888. DOI: 10.1145/3576915.3623079. [Online]. Available: https://doi.org/10.1145/3576915.3623079.
- [4] **Duy, K. D.**, Lee, H., "SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing," *IEEE Transactions on Cloud Computing*, pp. 1–18, 2022.
- [5] **Duy, K. D.**, Noh, T., Huh, S., Lee, H., "Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective," *IEEE Access*, vol. 9, pp. 168 656–168 677, 2021.

Last updated: May 25, 2025