
Capacity: Cryptographically-Enforced In-Process Capabilities
for Modern ARM Architectures

Kha Dinh Duy
khadinh@skku.edu

Sungkyunkwan University

Kyuwon Cho
kyuwon.cho@skku.edu

Sungkyunkwan University

Taehyun Noh
dove0255@skku.edu

Sungkyunkwan University

Hojoon Lee∗
hojoon.lee@skku.edu

Sungkyunkwan University

ABSTRACT

In-process compartmentalization and access control have been ac-
tively explored to provide in-place and efficient isolation of in-
process security domains. Many works have proposed compartmen-
talization schemes that leverage hardware features. Newer ARM
architectures introduce Pointer Authentication (PA) and Memory
Tagging Extension (MTE), adapting the reference validation model
for memory safety and runtime exploit mitigation. Despite their po-
tential, these features are underexplored in the context of userspace
program compartmentalization.

This paper presents Capacity, a novel hardware-assisted intra-
process access control design that embraces capability-based secu-
rity principles. Capacity coherently incorporates the new hard-
ware security features on ARM, based on the insight that the fea-
tures already exhibit inherent capability characteristics. It supports
the life-cycle protection of the domain’s sensitive objects – start-
ing from their import from the file system to their place in mem-
ory. With intra-process domains authenticated with unique PA
keys, Capacity transforms file descriptors and memory pointers
into cryptographically-authenticated references and completely
mediates reference usage with its program instrumentation frame-
work and an efficient system call monitor. We evaluate our Ca-
pacity-enabled NGINX web server prototype and other common
applications in which sensitive resources are isolated into differ-
ent domains. Our evaluation shows that Capacity incurs a low-
performance overhead of approximately 17% for the single-threaded
and 13.54% for the multi-threaded webserver.

CCS CONCEPTS

• Security and privacy → Operating systems security; Soft-
ware security engineering.

KEYWORDS

compartmentalization; capabilities; pointer authentication
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623079

ACM Reference Format:

Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee. 2023. Ca-
pacity: Cryptographically-Enforced In-Process Capabilities for Modern
ARM Architectures. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’23), November 26–30,
2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3576915.3623079

1 INTRODUCTION

Modern software is often large and complex. As a result, it suffers
from bugs, some of which are security vulnerabilities that concede
program control to adversaries or leak sensitive program resources
(e.g., cryptographic keys). Researchers and industry have therefore
sought to isolate the monolithic program into multiple process-
level compartments [6, 7, 10, 29, 43, 57], each ideally performing a
specific task (separation of privilege) and is given only the essential
privileges (least privilege). The process-level compartments of the
program must now communicate via Inter-Process Communication
(IPC) which accompanies inherent performance overhead.

Many works have proposed in-process and in-place compart-
mentalization methodologies [8, 25, 34, 58, 59, 63, 66, 68] that ei-
ther re-purposes existing hardware features [8, 34, 68] or adapts
of newly introduced hardware features, most notably using In-
tel’s Protection Keys for Userspace (PKU) [26]. Recent PKU-based
proposals [25, 30, 58, 63, 66] have demonstrated in-place isolation
with limited performance overhead. Hardware-assisted isolation
on ARM was previously explored [8] using domains memory pro-
tection feature that had an uncanny resemblance to PKU. However,
the domains feature has now been deprecated in AArch64.

We argue that the in-process compartmentalization designs on
the modern ARM architectures are currently underexplored. The
ARM processor architecture’s recent iterations introduced new
hardware-assisted software security features. Pointer Authentica-
tion (PA) [2, 3], is a hardware feature in ARMv8 that employs cryp-
tographic Authentication Code (AC) to protect pointers from corrup-
tion. Memory Tagging Extension (MTE) is another hardware feature
included in the ARMv8.5-A architecture that implements a key-
and-lock mechanism to enable tagging of pointers and the 16-byte
pointee memory blocks. However, the principles and mechanisms
of the ARM’s direction in hardware-assisted security are vastly
different from those of x86, i.e., PKU, and open a new design space
for program compartmentalization.

In this paper, we propose Capacity, a novel OS access control
model that revolves around capability security principles [13, 61].
A plethora of existing research has discussed capability as the ideal

874

https://doi.org/10.1145/3576915.3623079
https://doi.org/10.1145/3576915.3623079
https://doi.org/10.1145/3576915.3623079

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

scheme for achieving the least privilege compartments and elimi-
nating ambient authority in OSes [12, 61, 69, 70, 70, 72]. We observe
that the new ARM hardware extensions, PA and MTE, carry inher-
ent characteristics of capabilities. Capacity’s design choices fully
leverage these features. It creates in-process domains, subprogram
components that are given exclusive access to private resources.
Each domain is identified and authenticated by their domain au-
thentication keys (or domain keys), which is a PA cryptographic
key that Capacity reserved for authenticating resources. Our work
retrofits the OS-based access control with its consistent capability
scheme that provides life-cycle protection of sensitive objects; it
transforms not only memory references (i.e., pointers) but also file
object references into non-forgeable tokens.

In-process capabilities for object life-cycles.Capacity brings
a coherent in-process capability for compartments within the pro-
cess (subjects) and abstract process resources (objects) whose state
may alternate between a file or memory content throughout its life
cycle. Capability-based memory access control has been explored
by many previous works [12, 14, 33, 70, 72]. Notably, the CHERI
architecture [12, 70, 72] applies memory capabilities to pointers,
although the requirement of customized processor architecture lim-
its its applicability. Process-level capabilities have also been studied
from OS design perspectives [13, 18, 50, 61, 69]. These works focus
on access control of OS resources bestowed on the process often
represented in the form of files. However, securing today’s large
monolithic user programs calls for finer-granular access control
on files, not to mention the necessity of consolidating a memory
access control for in-process compartments.

Simple and efficient reference monitoring. Capacity’s co-
herent capability scheme also seamlessly incorporates a simple and
efficient reference monitor design for in-process access control. The
necessity and design space of efficient system call (syscall) refer-
ence monitors for in-process domains have been discussed in many
previous works [11, 58, 66, 67]. Since the OS kernel is unaware of
the in-process compartments, a reference monitor must mediate
accesses to process resources among the potentially mutually dis-
trusting compartments in addition to syscalls filtering that may
undermine the security of the compartments. We take a different
route from previous works to achieve both goals coherently. Ca-
pacity’s capability-engraved file descriptors carry information for
authentication and authorization. This eliminates the need for sep-
arate data structures, i.e., an Access Control List (ACL), to keep track
of each compartment domain’s ownership and access rights on file
objects. Also, the validation process of the capability is fast, as it is
essentially achieved through a single PA instruction.

Novel domain and PA context binding scheme. Our way of
creating PA contexts for in-process compartments is unique and
specifically devised for Capacity’s life-cycle capabilities. Previous
work has presented a framework for using PA and MTE that estab-
lishes kernel compartments with policy-defining PA modifiers [43].
However, Capacity chooses to assign a unique PA key for each
domain and perform key switches during domain transitions and
employs the PA modifier to isolate references between domain
instances. Capacity then uses the per-domain key and instance
modifier to compute the cryptographic AC for the resources and
embeds them into the resource handles themselves. This seem-
ingly small difference is a key design component for Capacity.

With a single key switch, Capacity can efficiently switch the au-
thentication context for both system resource handles and signed
userspace pointers. This allows Capacity to establish arbitrary
compartmentalization boundaries within programs and enables a
unified and consistent PA-based authentication throughout the life
cycles of program resources without a complex modifier manage-
ment scheme.

Challenges. Design and implementation of Capacity must sat-
isfy security requirements and be mature enough to be adopted
to real-world applications. Capacity rigorously assesses and ad-
dresses the security requirements for the capability references,
namely non-forgeability and non-reusability. This effort has been
made for every sensitive operation carried out by Capacity, from
domain transitions to signing and authentication of the capability
tokens. We detail our security considerations as we elaborate on
the design and provide a dedicated security analysis.

In addition, Capacity implements a robust instrumentation
framework for complex user programs from scratch. Capacity’s
PA+MTE-accelerated pointer capability requires complete mediation
of all pointer uses. Applying such a scheme to complex programs
poses a daunting challenge since a single incorrect instrumentation
would inadvertently crash the program. Similar PA-based com-
plete mediation of pointer uses have been developed by previous
works; however, none with the level of maturity of Capacity. For
instance, PARTS [38] was only evaluated with a benchmark suite.
Also, Capacity incorporates MTE to inter-domain memory isola-
tion. HAKC [43] presented PA+MTE instrumentation for kernel
module compartmentalization that only authenticates the cross-
domain pointers only once before their first use, while Capacity
must provide a domain-aware and completely mediated pointer
load and store instrumentation. As we will show through our eval-
uation, Capacity’s instrumentation framework is mature enough
to compile programs such as NGINX-LibreSSL and OpenSSH SSH
client. In summary, our contributions are as follows:

• We introduce a novel in-process compartmentalization de-
sign that adapts hardware-accelerated capabilities for the
life-cycle protection of domain resources.

• We design a simple and efficient capability-based reference
monitor to isolate in-process system resources.

• We establish PA key-identified domains to efficiently isolate
kernel and userspace resource references.

• We assess and address the unique security challenges of
capability-based isolation that requires complete mediation
on reference uses, prevention of impersonation, and protec-
tion against forging and reusing of references.

• We develop an instrumentation framework that is robust
enough to completely mediate complex user programs by
addressing compatibility issues.

• We evaluate our implementation1 on real-world applications
and report low overheads on the approach.

1Available at: https://github.com/sslab-skku/capacity

875

https://github.com/sslab-skku/capacity

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Domain A Domain B

User
Kernel capac_enter(DomA)

capac_exit()

Reference Monitor

open()

DomainAuthKey = DomainAuthKey = DomainAuthKey =

"/etc/pkey.pem"

File Descriptor

PointerTag
Ambient Domain

Auth Code
Check

Tag Match
Check

T
F

F
Allow
Access

T

Figure 1: Overview of Capacity’s in-process domains and life-cycle objects protection.

2 BACKGROUND

2.1 Pointer Authentication (PA)

Pointer Authentication (PA), introduced on ARMv8.3-A [2], provides
hardware acceleration and ISA extension for cryptographically au-
thenticated pointers. The design of PA is inspired by previous works
that protect pointers from corruption [32, 42]. PA allows attaching
a Pointer Authentication Code (PAC) to a pointer in the unused bits
[54:48] of a 64-bit address. A PAC is generated using one of the five
keys stored in the newly added registers that can only be accessed
or modified with privileged instructions. The five keys consist of
two keys for signing code/instruction pointers (Instruction-{A,B}),
another two for signing data (Data-{A,B}) pointers, and one general-
purpose key (G). We denote these keys as K𝐼𝐴 ,K𝐼𝐵 , K𝐷𝐴 , K𝐷𝐵 and
K𝐺 . PA also introduces pac and aut families of instructions to sign
(i.e., calculate the PAC and attach it to the value in the operand
register) and authenticate a 64-bit value with an optional modifier
using the key indicated by the instruction name. If authentication
on a pointer succeeds, the authentication code in the pointer is
cleared, making the pointer usable. The PAC value is corrupted
if the check fails, which triggers a segmentation fault when the
pointer is dereferenced. We denote the operations of pac and aut
instructions that use the key K to sign and authenticate a given
data D as PAC(K, D, mod) and AUT(K, D, mod).

2.2 Memory Tagging Extension (MTE)

Memory Tagging Extension (MTE) [4] is another hardware-backed
security feature to ARMv8.5-A [2]. MTE adapts the principles of
tagged memory in the existing research proposals and implementa-
tions in other architectures [46, 71, 75]. It facilitates memory safety
by enabling the 4-bit tagging of pointers and 16-byte aligned address
ranges. When MTE is enabled, the processor raises an interrupt
if the tags differ between the memory and the pointer, allowing
vulnerabilities such as buffer overflow to be captured. We denote
TAG(P, T, size) as the tagging operation that first assigns the 4-bit
tag T to the bits [59:56] of a pointer P, then tag 16-byte-aligned
memory region between P and P+size with T. In addition, PA and
MTE can be simultaneously enabled. Hence, a pointer can be tagged
then signed, and the resulting pointer would carry a tag in bits
[60:56] and PAC in [54:48].

3 OVERVIEW

Figure 1 illustrates an overview of Capacity. Capacity’s design
demonstrates a comprehensive capability model for file and mem-
ory objects access control that can be applied to commodity ARM
systems that support PA and MTE. Capacity’s primary objective
is to guarantee each domain’s exclusive access rights to the sen-
sitive domain-private objects. It associates each domain, called a
Capacity domain, with a unique PA cryptographic key and switches
the currently activated key using an in-kernel reference monitor
before entering a domain.

Consider the common pattern of sensitive object use shown
in Figure 1 (Domain B). First, a file-system path reference
("/etc/key.pem") is used as an argument to the open() syscall. A
file descriptor to the file object is then obtained. Finally, the object
is loaded into a memory region (e.g., with the read() syscall) so
the program can interact with it through pointers (0x00004bfff...).
In Capacity, the creation and usage of three types of resource
references are completely mediated with a coherent PA+MTE-based
authentication, provided by (1) a lightweight in-kernel reference
monitor that efficiently validates path and file descriptor (FD) refer-
ences in syscall arguments, and (2) PA+MTE-assisted tagged mem-
ory allocation and pointer authentication instrumentation that
isolate domain-private memory and their references.

This section provides a high-level overview of Capacity’s ca-
pability model and its programming model. We will delve into the
design and implementation of each of Capacity’s components that
enforce its security in §4, §5, and §6.

3.1 Threat model

We assume that the domains are mutually distrusting. The pro-
gram’s vulnerabilities can potentially grant adversaries with arbi-
trary memory manipulation and control-flow subversion primitives,
compromising an Capacity domain or the ambient domain (the
rest of the program code not inside Capacity domains). Even so,
a compromised domain must not access other domains’ private
objects. We assume that the processor and the kernel are trusted
and that modern OS security measures, such as the W⊕X policy
and ASLR, are in place. Additionally, we deem the program initial-
ization, including the initialization of Capacity, free of attacker
influence. We exclude side-channel attacks and microarchitectural
attacks from the scope of this paper.

876

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

Capacity also incorporates the existing backward-edge and
forward-edge Control-Flow Integrity (CFI) in its implementation
and is compatible with recent advances in PA-assisted CFI tech-
niques. PA-based backward-edge CFI [37, 38, 51, 55] authenticates
the return addresses on the stack with K𝐼𝐵 , which render the tradi-
tional attacks (e.g., ROP attacks) that overwrite the return address
on the stack infeasible. PA-based forward-edge CFI [38, 73] authen-
ticates code pointers with K𝐼𝐴 with its LLVM ElementType ID as
the modifier, which restricts indirect calls to (1) valid entry points
of functions (2) functions of the matching type.

3.2 Security requirements

The capability principles hold only when the common security
requirements for capability are met. In particular, we observe that
Capacity must satisfy the following security requirements:

R1 Non-impersonatable domains: Capacitymust be able to iden-
tify and authenticate intra-process domains and prevent
impersonation.

R2 Complete mediation: all access to file and memory objects
must be mediated by Capacity.

R3 Non-reusable references: Capacity domain-private references
are only valid within the domain that owns the object.

R4 Non-forgeable references: Capacity references must not be
forged by the adversary.

Throughout the rest of this paper, we use the above requirements
to analyze and manifest the security guarantees of Capacity. Up-
holding the security requirements, therefore, is a challenge that
must be addressed by Capacity’s design and implementation.

3.3 Subjects and Objects

In Capacity’s capability model, the subjects are subgraphs of pro-
gram execution that interact with sensitive objects called Capacity
domains. Program code that does not belong to a domain is called
the ambient domain. Capacity identifies and authenticates each
domain with a unique PA key, called the domain key. Each domain
is also associated with an MTE tag for the tagging of the domain’s
private memory. We use K𝐷𝐵 among the kernel-managed PA keys
as the domain key. K𝐷𝐴 is the ambient key used to sign and au-
thenticate resources accessible by the entire program. K{𝐼𝐴,𝐼𝐵} are
reserved for proposed PA-based forward-edge and bardward-edge
CFI defenses [1, 37, 38, 55].

Domain switching. A Capacity domain is encapsulated be-
tween the APIs capac_enter and capac_exit. Domain switching
is performed with the help of a lightweight in-kernel reference
monitor, as we will describe in §4. Upon entering a domain, the
userspace program updates its current MTE tag and requests the
reference monitor to switch the currently activating domain au-
thentication key to that of the target domain. A per-instance PA
modifier is also maintained in both kernel and userspace to iden-
tify instances of a domain invocation. capac_exit() restores the
domain key, MTE tag and modifier to those of the ambient domain.
We do not support the nesting of domains in the current prototype.

Object encapsulation. As summarized by Figure 2, Capacity
facilities employ PA to sign private resource references with the
domain key and the per-instance modifier (e.g., a unique session ID),
engraving the reference ownership into its embedded AC. Before a

AddressAuth Code
048

Tag
546063 56

01721233031

FD NumberAttr.DAuth Code
Capsicum-like Attributes
Domain (D=1) / Ambient (D=0)
PAC(KDB, FD no.|D|Attr ,MOD|kernel secret) if D=1
/ PAC(KDA, FD no.|D,kernel secret) if D=0

PAC(KDB, Tdom|ADDR,MOD) if Domain-private
/ PAC(KDA, Tdom=0|ADDR, 0) if D=0 if Ambient

Figure 2: Capacity’s reference encapsulation of pointers and

file descriptors with cryptographic authentication code (AC).

reference is used to access some resource, Capacity authenticates
its ACwith the currently activating domain key and modifier before
granting the access. Consequently, object references are turned into
non-forgeable (R4) capability tokens that are valid only when the
context is within their owner domain. By simply switching the
authentication key, Capacity prevents cross-domain reusing of
both kernel and userspace object references (R3).

We introduce the ambient objects, non-private and accessible
from all domains, e.g., global variables and non-sensitive files, to
avoid the programming model becoming too restrictive. All refer-
ences to ambient objects are to be signed and authenticated with
K𝐷𝐴 . The ambient memory objects are given a T𝐷𝑜𝑚 of 0, which
makes all untagged memory pointers ambient memory references,
and only the deliberately tagged pointers become references to
domain-private memory. To facilitate multi-domain interactions,
Capacity also supports the delegation of references. When a refer-
ence delegation request is received, Capacity first authenticates
the reference to prevent delegation of non-owned resources (R1),
then re-signed it with the target’s domain key and instance modifier.
Especially for memory reference delegation, Capacity compares
the pointee memory’s tag with the pointer’s tag before recoloring
both to the target domain’s memory.

3.4 Programming model overview

A programmer interacts with Capacity through a set of well-
defined APIs provided by the runtime library and program anno-
tations that direct the program instrumentation, shown in Table 1.
We demonstrate the programmer’s perspective when retrofits intra-
process capabilities into programs through a quintessential example
of secret import and uses in Figure 3.

The programmer first conceptually defines in-program domains
(e.g., DOM_CRYPTO) within the program with respect to the domain-
private resources. The subprogram interval is enclosed by capac_-
enter() and capac_exit() (lines 4 and 7), and each interval is
paired with a domain key. In the example, ctx->id contains the
unique ID for the encryption context, which is set as the currently
activated PA modifier for DOM_CRYPTO. A domain can span a few
function calls, as shown in the example. The domain entrance
cannot be nested; however, Capacity is designed to support the
sharing of functions between domains.

The programmer then identifies domain-private objects and their
references. In the case of file(-like) objects, a list of domain-to-file
mappings is provided as an argument to capac_init() (line 1)
to notify the reference monitor of the domain ownership of file

877

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

API & Compiler Annotation Description

A
P
I

capac_init(configurations) Initializes Capacity facilities, assigns PATH to domains, enables syscall authentication
capac_enter(target_id, mod)/capac_exit() Enters the target domain/Exits to the ambient domain
capac_limit_fd(fd, cap_mask) Limit the capabilities of an FD
capac_delegate_fd(fd, target_id, mod, cap_mask) Limits the capabilities and delegate an FD to the target domain
capac_malloc(size)/capac_free(ptr) Allocates/frees memory tagged with the currently active domain
capac_delegate_ptr(ptr_loc, size, target_dom, mod) Delegates an in-memory pointer to target_dom and also re-colors the memory

A
n
n
.

DOM_PRIV_FUNC Tags function’s stack frame with the currently executing domain’s tag (T𝐷𝑜𝑚)
DOM_PRIV Marks a source domain-private pointer for taint analysis.

Table 1: Capacity APIs and program annotations

1 capac_init(...);
2 ...
3 // K𝐷𝐵 = K𝐷𝑜𝑚𝑐𝑟𝑦𝑝𝑡 , Dom𝑐𝑢𝑟𝑟 = Dom𝑐𝑟𝑦𝑝𝑡 , Mod𝑐𝑢𝑟𝑟 = ctx->id

4 capac_enter(DOM_CRYPTO, ctx->id);
5 load_secret(ctx, ’’secret.key’’);

6 encrypt(ctx, req);
7 capac_exit();
8 ...
9 void load_secret(DOM_PRIV crypto_ctx_t* ctx,
10 const char * key_path){
11 // Import the secret key from the filesystem

12 int fd FD-Sign

13 = open(key_path, O_RDONLY); PATH-Auth

14 ctx->secret_key = capac_malloc(KEY_LEN + 1); PTR-Sign

15 read(fd, ctx->secret_key, KEY_LEN); FD-Auth / PTR-Auth

16 ...
17 }
18 DOM_PRIV_FUNC // Isolate function stack frame

19 void encrypt(DOM_PRIV crypto_ctx_t* ctx, req_t* req) {
20 // Use the secret key to encrypt a plaintext string
21 for (int i = 0; i < KEY_LEN; i++)
22 req->ciphertext[i] PTR-Auth

23 = ctx->secret_key[i] PTR-Auth

24 ^ req->plaintext[i]; PTR-Auth

25 }

: Domain-private references : Ambient references

Action : Capacity actions ANNOT: Capacity annotations

Figure 3: Example of Capacity’s programming model, anno-

tated with Capacity references and their enforcement.

resources. Afterward, the reference monitor automatically authen-
ticates any path and FD references in the syscall arguments (lines
11, 12, 14) and issues FDs signed with their owner domain when FDs
are created. For memory objects, the programmer must mark the
domain-private region containing the object and its domain-private
pointer references. To allocate domain-private memory, the pro-
grammer either changes their allocation site to use capac_malloc
(line 13), which allocates memory tagged with the domain’s tag
and returns a tagged pointer, or uses DOM_PRIV_FUNC (line 17) to
direct the instrumentation to isolate the function’s stack frame. On
DOM_PRIV_FUNC-annotated functions, the function is instrumented
such that the stack frame is tagged with the currently executing
domain’s tag number and reverted upon function return. Then,
the programmer applies DOM_PRIV (line 18) to the source domain-
private pointer. From then on, the pointer is taint-tracked to mark

all derived references to the object within the function. Capac-
ity then instruments PA-based signing/authentication with the
domain key of tracked pointers, including the member variables
(e.g., ctx->secret_key) (lines 13, 14, 21).

4 DOMAIN SWITCHING AND

AUTHENTICATION

Capacity’s API design allows the introduction of flexible com-
partmentalization boundaries to existing software through in-place
annotations. However, such a designmust be robust against domain
impersonation (R1). In Capacity’s threat model, domain imper-
sonation happens when a compromised domain diverts the control
flow into Capacity APIs, e.g., calling the domain entry gates with
arbitrary arguments, or corrupts Capacity’s critical values, e.g.,
MTE tag ID stored in memory to gain illegal access to domain-
private resources. Capacity prevents such domain impersonation
using two techniques. First, Capacity authenticates the domain
entry sites by requiring them to construct entry tokens, which the
reference monitor can verify before granting the domain switch.
Second, it introduces an in-userspace authentication protocol that
securely fetches the currently executing domain’s MTE tag. In both
cases, after successful authentication, Capacity securely places
its critical values (the domain’s memory tag and the per-instance
modifier) in compiler-reserved registers and fetches them when
needed to prevent illegal modifications.

Secure domain switching. The program enters a domain
through the API capac_enter (Table 1) that internally invokes an
ioctl syscall to the reference monitor. The reference monitor then
switches the currently activating K𝐷𝐵 to that of the target domain
by writing into the dedicated PA key registers with its kernel privi-
lege. Hence, an attacker who can invoke ioctl calls with arbitrary
values could achieve impersonation and access domain-private refer-
ences. Capacity protects the domain switches from impersonation
by authenticating domain entry points with K𝐺 . Before a domain
switching request, the call gate signs the domain ID argument in
capac_enter(domID, mod) with a pacga instruction, then passes
the signed argument to Capacity reference monitor. Since there
is no dedicated authentication instruction that uses K𝐺 , the ref-
erence monitor uses pacga to generate the valid argument with
the domain ID and compare it with the argument from the call
gate. Domain entry is granted if the two values match. After the
entry is granted, the call gate loads the per-instance modifier into
a reserved floating-point register (ModReg), which is to be used by

878

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

our instrumentation for pointer authentication demonstrated in §6.
Finally, the call gate clears the token-containing register to prevent
the leaking of the entry token. capac_enter is implemented as the
following call gate, which is to be inlined to the domain switching
sites:

1 PACGA(token, target_id, 0)
2 if(!ioctl(capac_fd, CAPAC_ENTER, token, modifier))
3 exit();
4 // Load per-instance modifier into ModReg register
5 asm volatile("fmov ModReg, %[mod]" ::[mod] "r"(modifier) :);
6 // Clear entry token from register

Capacity endows authenticity to the entry points by preventing
attackers from diverting the control flow into arbitrary instructions
with CFI and ensuring that the instruction pacga is absent within
the process but the domain entry sites. K𝐺 is currently unused
in both deployed and proposed PA-based defenses. Therefore, it is
unlikely that it would naturally appear under normal circumstances.
Also, since ARM is a RISC architecture, we can generally rule out
the issue of unaligned, unintended occurrences of the instruction,
an issue that makes preventing illegal instruction occurrences chal-
lenging on x86 architectures [63].

Authenticated domain ID retrieval. Capacity enables a trust-
worthy runtime domain ID fetching procedure. This avoids hard-
coding MTE tags into functions that require memory tagging since
these functions might be used in confused deputy attacks to tag
arbitrary memory regions. Moreover, fetching the domain ID at
runtime allows a Capacity-protected function to be called from
multiple domains. The procedure is also imperative in runtime do-
main memory and pointer tagging in Capacity’s instrumentation,
as we will explain in §6. Capacity’s private heap memory alloca-
tor, capac_malloc(), also uses the procedure to authenticate the
callee’s domain ID and tag the allocated memory.

To prepare for runtime domain ID retrieval, Capacity first con-
structs a Domain Signature Table (DST) that is filled with domain
signatures of each declared domain (DST[i] = PAC(K𝐷𝐵𝑖 , 0, 0)). Af-
ter initialization, the table remains read-only throughout program
execution to prevent tampering. Additionally, a global variable that
stores the domain ID of the currently active domain, int curr_-
dom, is updated on each capac_enter(domID) and capac_exit()
invocation.

The following snippet is inlined to verify the current domain ID,
such that it can be used as a MTE tag for the pending operation:

1 domain_signature_t dom_sig = DST[curr_dom];
2 AUTDB(dom_sig);
3 assert(dom_sig == curr_dom);
4 // Form a tag mask shifting left by 56 bits
5 asm volatile("lsl %[tag], %[tag], 56" : [tag] "=r"(target_id)::);
6 // Load tag mask into TagReg register
7 asm volatile("fmov TagReg, %[tag]" ::[tag] "r"(target_id) :);
8 // T𝐷𝑜𝑚 is known from this point onward

The above procedure first fetches the current domain’s signature
from the DST, then authenticates it with the domain key. If authen-
tication succeeds, a tag mask is constructed, e.g., 0x00ff00..00,
which can be applied to an untagged pointer with a bitwise OR. The
tag mask is stored in a reserved floating-point register (TagReg), so
the memory tagging operations can efficiently retrieve it.

5 FILE SYSTEM OBJECT ISOLATION

Capacity includes a reference monitor that verifies the arguments
of syscalls to enforce the complete mediation (R2) of system re-
source accesses. This capability-inspired authentication mechanism
drastically differs from previous works implementing ACL-based
reference monitors for in-process syscall filtering and file access
control [11, 25, 58, 63, 66]. In those systems, enforcing access con-
trol on domain-private sensitive file objects requires a separate logic
for the monitor detached from the program semantics. Moreover,
ACL-based access control requires keeping track of the isolated
objects and the domains that can access them at runtime [58]. In
contrast, the FDs in Capacity are cryptographically secured; the
proof of ownership and object attributes are attached to the refer-
ence itself, regardless of the number of subjects sharing a resource.

We implement the reference monitor in about 1000 LoC. It pro-
vides domain key switching and syscall interception through syscall
table hooking using a similar approach to a previous efficient ref-
erence monitor [58]. To avoid the system monitor affecting all
processes within the system, we set an unused flag in struct
thread_info->flags to mark Capacity-enabled processes dur-
ing initialization and check for the flag before performing syscall
authentication.

5.1 Enforcing domain-private file-system paths

Capacity supports file path isolation to be compatible with exist-
ing programs without significant rewriting effort. Capacity’s file
path authentication utilizes the pre-existing methods for attaching
policies to file system objects used by kernel security subsystems
(e.g., SELinux [56]).

File paths protection is kickstarted by the capac_init API call
that sends a list of domain-private files and their owners to the
reference monitor. The reference monitor first resolves each path to
obtain the corresponding inode structure. It creates a per-process
table in the file’s inode->f_security. For each owner domain of
a file path, it stores the domain signature, PAC(K𝐷𝐵 , NULL, 0), in the
table. If the file is not domain-private, the table is left as NULL. After,
the reference monitor transitions the process into the protected
mode, where the reference monitor authenticates every path and
FD arguments used in syscalls.

Before authenticating a file object import, the requested file path
is first resolved to obtain the underlying inode structure. This is to
avoid confusion when encountering relative paths and symbolic
links. If the table for the current process in inode->f_security
is NULL, the reference monitor recognizes that it is an ambient
object and can be accessedwithout further authentication. If domain
signatures are present, the reference monitor authenticates them
using the corresponding domain key until a valid signature is found.
The reference monitor verifies that the current user context is in
the object’s owner domain if any valid signature is found while
rejecting the file access otherwise. Finally, the returned FD for the
requested file is signed withK𝐷𝐴 for ambient objects or the domain
key for domain-private objects.

5.2 Enforcing domain-private file descriptors

Capacity’s reference monitor intercepts syscalls that generate FDs
and create signed FDs before they are sent to the userspace. It also

879

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

intercepts FD-accepting syscalls (e.g., read) for FD authentication.
Hence, all FDs issued to the process carry ACs that are authenti-
cated on use. Additionally, we use a secret modifier only known
to the kernel as the PA signing modifier, to prevent forging by
signing a plain integer with pac instructions in the userspace (R4
). Capacity’s security model also requires that the integer for FDs
are not reused (R3), even after they are closed. We achieve this
by changing the hook for the close to reserve the closed FD in the
thread’s FD table, preventing the OS from reusing it.

In-process FD capabilities. Capacity’s FD access control
scheme resembles that of Capsicum’s capability-enabled FDs [69]
but is much more lightweight and is enforced at the in-process
granularity. Capacity’s FD capabilities scheme requires no ad-
ditional kernel metadata for the permissions of FDs since the in-
formation necessary to authorize an FD use is engraved in the FD
itself. Moreover, thanks to integrity protection provided by crypto-
graphic authentication, we can securely embed fine-grained access
control attributes into the file descriptors themself (FD->Attr. in
Figure 2) without extensive bookkeeping. A combination of PA-
assisted authentication on the FD and a per-syscall check based on
static policies is sufficient to grant or reject file descriptor access.

Our prototype supports four capabilities, represented as a bit-
mask of enabled capabilities. The CAP_WRITE and CAP_READ capa-
bilities allow read-related syscalls (e.g., read, recvfrom) and write-
related syscalls (e.g., write) to use the FD. CAP_SOCKET enables
network-related syscalls, such as accept and listen. CAP_DELE-
GATE allows the FD to be delegated to other domains. The reference
monitor uses a capability bitmask for each syscall to validate the
FD’s attributes. On the other hand, cap_limit_fd() instructs the
reference monitor to remove the selected capabilities from an FD
and re-sign it.

Signing and authentication of 32-bit FDs. Figure 2 demon-
strates the signing strategy of file descriptors. Since most file de-
scriptors are 32-bit signed integers, we devised a 32-bit signing and
authentication scheme. To sign an FD, the reference monitor first
signs its 64-bit zero-extended value like a normal pointer. Then, it
attaches the PAC to bits[30:23] of the FD. The monitor uses bit[22]
(FD->D) bit to distinguish between domain-private and ambient FD,
such that domain-private FDs are authenticated using the domain
key. Bit[17:21] stores the bitmask of the previously described FD
capabilities. bit[31] is unused to prevent the descriptor from being
interpreted as an error code (e.g., if (fd < 0)). FD authentication
on 32-bit FDs happens likewise.

Handling special FD values. During our implementation, we
found that special FD values, such as STDIN, STDOUT, or AT_FDCW,
need to be handled differently since they are often hard-coded into
the application as integer values (e.g., 1 and 2). We currently make
our reference monitor omit their authentication for compatibility,
given that they are always ambient objects.

6 DOMAIN MEMORY ISOLATION

This section describes how Capacity establishes its capability-
inspired memory isolation model. Capacity enforces domain mem-
ory isolation through MTE-assisted segregation of domain-private
memory regions and a complete mediation (R2) of memory access

through pointers that are made non-reusable (R3) and non-forgeable
(R4) capability tokens.

Capacity first introduces facilities to allocate domain-private
memory, including a tagged heap memory allocator and compiler-
instrumented stack tagging. Capacity also present an instrumen-
tation that mediates pointer uses with PA-based on-load pointer
authentication. It instruments the program to sign pointers before
they are stored in memory and authenticate pointers as they are
loaded from memory into registers. Different from PARTS [38], a
previous work that also introduced an on-load pointer authenti-
cation scheme, Capacity uses K𝐷𝐴 to sign/authenticate ambient
pointers, and selectively uses K𝐷𝐵 for domain-private pointers
identified using a static taint analysis, making its instrumentation
domain-aware. Capacity also uses a user-defined, instance-specific
modifier for domain-private pointers to prevent their reuses across
domain instances.

Capacity’s instrumentation framework seeks to be compatible
with complex user programs, as we will demonstrate through our
evaluation (§7). It must enforce complete mediation of program
pointer uses for whole-program pointers. We initially used the
existing implementation of PARTS [38] but quickly found that it
is inapplicable to large programs since even one incorrect han-
dling would result in a crash. Toward this end, our instrumentation
scheme is developed from scratch to support large userspace pro-
grams reliably. Our instrumentation handles stack spill with a new
pointer liveness tracking algorithm. We also introduce solutions
to compatibility issues we observed with whole-program PA in-
strumentation. The instrumentation framework is implemented
on LLVM 14.0.0 [52], which includes built-in intrinsics for PA and
MTE features. As of the time of writing, no available hardware
supports MTE. For this reason, we used a QEMU virtual machine (-
march=armv8.5-a+pauth+memtag) that supports emulating MTE
instructions as a testing target during implementation.

6.1 Domain-private memory tagging

Capacity establishes domain-private memory regions by tagging
each domain’s private memory with the domain’s integer domain
ID (T𝐷𝑜𝑚) obtained with domain authentication (§4).

Private heap memory allocation. libcapacity manages a
domain-private heap memory with its dlmalloc-based allocator
that maintains a statically allocated, MTE-enabled memory pool.
Upon invocation, capac_malloc(size) first performs DST-based
domain authentication so that it can determine the tag number of
the currently executing domain as we explained in §4. Afterward,
capac_malloc() allocates memory from its memory pool, tags it
with the domain ID, and returns a pointer tagged with the domain
ID. The returned pointer is not signed as it is delivered in the return
value register, adhering to Capacity instrumentation’s on-store
sign and on-load authentication policy.

Private stack tagging. Capacity provides private stack mem-
ory to domains through in-place tagging and untagging of the stack
objects with the current domain ID (i.e., no explicit stack switching).
The DOM_PRIV_STACK annotation directive on a function notifies
the instrumentation framework to instrument the function pro-
logue and epilogue to prepare a domain-private stack before the
function execution and to untag and zero out the tag before return.

880

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

.prologue:
// Sign return addr
pacib x30, sp
...
// x9: DST[curr_dom]
// Auth current domain get T𝐷𝑜𝑚

autdzb x9
cmp x9, x8
b.ne .auth_failed
// Build tag mask and save to ModReg
lsl x8, x8, #56
fmov TagReg, x8

...
// Tag pointer
// x8: T𝐷𝑜𝑚 tag mask
fmov x8, TagReg
mov x24, sp
orr x25, x24, x8
// Tag stack frame
stg x25, [x25]
...

// x0: domain-priv. ptr
fmov x8, ModReg

pacdb x0, x8 PTR-Sign

str x0, [mem]
...
// x13: domain-priv. ptr
ldr x13, [mem]
fmov x8, ModReg

autdb x13, x8 PTR-Auth

...
// x12: ambient ptr

autdza x12 PTR-Auth

.epilogue:
mov w0, #1
// Untag/zero out stack
stzg x24, [x24]
// Clear tag mask register
fmov TagReg, xzr
...
// Auth return addr
retab

(a) Prologue: Domain ID auth. (b) Private stack tagging (c) Domain-aware pointer auth. (d) Epilogue: stack clean up

Figure 4: Capacity’s instrumentation of an annotated function.

Figure 4 (a), (b), and (d) show the stack tagging instrumentation
on an annotated function. The instrumented prologue authenticates
and obtains the currently executing domain’s ID by consulting
DST, then loads the tagging mask into the reserved register. Then,
it retrieves the tagging mask from the reserved register and tags
the function’s stack frame when a stack variable is allocated. The
epilogue returns the stack frame to the ambient domain by zeroing
out the stack contents and setting the tag on the memory region
back to 0. The instrumentation uses stzg instruction introduced in
MTE that performs such operation efficiently in the hardware.

6.2 Domain-aware pointer authentication

The instrumentation now inserts pac and aut instructions for
pointer store and load sites and uses K𝐷𝐵 selectively for domain-
private pointers. Compared to on-use pointer authentication
schemes, such as the one used in PA-based CFI [38, 73], on-load
authentication provides better efficiency and compatibility when
adapted to whole-program data pointers [38].

The previous PA on-load pointer instrumentation scheme [38]
instruments the program in LLVMMachine IR (MIR) to handle cases
where pointers are spilled into memory by the compiler. However,
we found that it does not reliably detect and instrument such cases
due to the use of ad-hoc heuristics. To handle this issue, we also
implement our instrumentation in MIR after most optimizations are
already performed but introduce a vastly improved instrumentation
algorithm. Our instrumentation relies on embedded metadata from
our IR-level taint analysis and built-in type metadata to inform the
instrumentation decisions without modifying the instruction selec-
tion pipeline. Moreover, instead of using heuristics, we introduce
a liveness analysis that keeps track of sensitive pointers on the
stack frame and inside the registers. Those improvements allow us
to reliably enforce the on-load authentication scheme while also
avoiding intrusive changes to instruction selection and register
allocation stages.

Identifying domain-private pointer load/store. Capacity
employs an intra-procedural data-flow analysis that aims to find
all IR pointer-containing variables, where an annotated domain-
private variable, or its members, may flow to. The analysis takes
two sources: variables that are explicitly annotated with DOM_PRIV
and pointers returned from capac_malloc(). We use a worklist
algorithm starting from the taint source to visit all variables and

instructions recursively. It follows the def-use chains of LLVM
IR instructions and adds all users of the visited instruction to the
worklist. When an instruction that addresses a pointer variable (e.g.,
alloca, getelementptr) is encountered along the def-use chain,
the analysis attaches metadata to the LLVM value that the later
instrumentation can retrieve. Additionally, the analysis performs
backward tracking whenever it encounters a store instruction since
def-use analysis cannot track such data-flow; it adds the instruc-
tion’s destination operand to the worklist in such cases.

MIR instrumentation. Our MIR instrumentation is based on
liveness analysis in compiler designs [49]. The instrumentation
keeps track of registers and stack frame locations that potentially
contain pointers/sensitive pointers, called the live pointer set. At
compile time, the pass scans and visits MIR instructions. On load
or store instructions, it tries to retrieve LLVM type and taint infor-
mation to extract whether the instruction accesses a pointer/sen-
sitive pointer. If such information is unavailable, the instrumen-
tation consults the live pointer set. For a store instruction, the
instrumentation checks whether the source operand (e.g., “x1” in
str x1, [sp, #8]) is within the live pointer set, and whether the
operand is sensitive. For a load instruction, the same check is per-
formed on the instruction’s destination operand (e.g., “[sp, #8]”
in ldr x8, [sp, #8]).

Instrumentation is performed on the load and store instructions
as shown in Figure 4c. On non-sensitive pointer operands, it instru-
ments withK𝐷𝐴 signing/authentication. Before signing an ambient
pointer, the instrumentation inserts a masking instruction that ze-
ros out the tag to prevent pointer forging through ambient code
signing (R4). When instrumenting sensitive pointer operands,K𝐷𝐵

is used. An instruction that loads the modifier from ModReg into a
spare register (fmov) is also inserted. The modifier is then used for
signing/authentication of the pointer. Finally, the instrumentation
updates the live pointer set after visiting each instruction. For in-
stance, if an instruction kills a register or overwrites a stack frame
location with non-pointer data, the register/stack frame index is
removed from the live pointer set.

6.3 Handling compatibility issues

We developed supporting transformations that can be optionally
enabled to solve PA-based instrumentation compatibility issues.

881

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

visit(𝑖𝑑, 𝑡) =

{sign(𝑖𝑑)} ∪ visit(∗𝑖𝑑, 𝑡1) if 𝑡 = 𝑡1∗
𝑛⋃
𝑖=1

visit(𝑖𝑑𝑖 , 𝑡𝑖) if t = struct {𝑖𝑑1 : 𝑡1, ..., 𝑖𝑑𝑛 : 𝑡𝑛 }

∅ if 𝑡 = int

Figure 5: Type-based global constructor generation. sign(𝑖𝑑)

signs an in-memory pointer indexed by LLVM variable 𝑖𝑑 .

Type-unsafe object initialization. The following example
demonstrates the type-unsafe object initialization pattern found in
C applications, including NGINX and LibreSSL:

1 obj_t* obj = calloc(1, sizeof(obj_t));
2 //...
3 if (obj->ptr == NULL){ /* Perform initialization */ }

In this example, when the program loads an uninitialized pointer
from memory at line 3, the on-load authentication would fail since
the pointer is not signed, making the branch condition evaluate in-
correctly. To solve this, we introduce a pass that transforms the pro-
gram’s NULL checks to cover the AUT failed NULL value (e.g., ptr
!= NULL && ptr != 0x20000000). We also explored inferring the
type of the zero-initialized objects, then recursively signing all of
its containing pointers, using type inference methods proposed in
[64], but found that the approach is infeasible on complex programs
without heavy source code processing.

Global pointers in complex structures. The prototype of
PARTS [38] only scans and signs pointers in the global structures
at the top-most level, which misses many cases where pointers
are stored in the nested structs. We tackle this problem more com-
prehensively with a type-assisted approach that recursively visits
global variables, as shown in Figure 5. The algorithm uses the same
type syntax and notations as PtrSplit [39], where int represents an
integer type, 𝑡1∗ represents a pointer type, and struct type contains
a list of types for each member. visit(𝑖𝑑, 𝑡) is invoked on every
global variable 𝑖𝑑 with type 𝑡 to generate initialization functions.
They are then inserted before the program logic to sign the global
pointers.

IssueswithMIR instrumentation.We also resolved numerous
compatibility issues with the MIR-based instrumentation. First, we
found that theMIR-based instrumentationmust be aware of register
liveness. When a pointer inside a register is signed and then stored
in memory, the signed in-register pointer may still be live. This side
effect of pointer signing can cause following legitimate memory
access with the in-register pointer to cause a fault. As a solution,
our instrumentation inserts a xpac instruction to remove the PAC
of the in-register value, immediately following the pac instruction
if (1) the pac-ed register is used again in the function, or (2) the pac-
ed register is passed to another function as an argument. Another
issue that we found was the cases of PA instrumentation failing on
load and store instructions that have the same register in source
and destination operands (e.g., ldr, x8, [x8]). To resolve this,
we transform these instructions to use distinct operands (e.g., ldr,
x8, [x9]) instead.

Syscall

& API

Base.

(ns)

Cap.

(ns)

Ovh.

(%)

Syscall

& API

Base.

(ns)

Cap.

(ns)

Ovh.

(%)

S
y
s
c
a
l
l

socket 718.5 722.5 0.56 setsockopt 235.7 242.2 2.75
bind 400.0 408.0 1.98 listen 351.2 361.5 2.91
accept4 1236 1248 0.96 recvfrom 192.6 199.4 3.56
openat 471.5 486.9 3.26 read 247.1 254.2 2.88
pwrite64 320.6 328.2 2.35 pread64 231.8 239.0 3.06
fstat 185.9 191.5 3.03 fcntl 148.1 155.8 5.20
dup3 132.5 138.0 4.22 lseek 149.7 154.8 3.38
mmap 130.0 130.0 0.01 getpid 118.6 − −

A
P
I

capac_malloc 23.46 50.28 114.6 capac_free 14.7 37.4 154.4
capac_enter − 167.7 − capac_exit − 161.2 −
delegate_ptr* − 327.7 − delegate_fd* − 182.9 −
limit_fd* − 142.4 −
* capac_ prefix is omitted

Table 2: The latency of Capacity system calls intervened

by reference monitor and libcapacity APIs (Cap.), in com-

parision with the baseline (Base.). Latency of getpid is also
measured for comparison.

7 EVALUATION

In this section, we first conduct a set of microbenchmarks on the
reference monitor and libcapacity to illustrate the overhead in-
duced by individual operations of Capacity (§7.1). We describe the
adaptation of Capacity in protecting sensitive resources of three
real-world applications in §7.2. Finally, we evaluate the performance
of Capacity-adapted applications in §7.3 to show Capacity’s over-
all impact on performance.

Evaluation method. We ensured the functional correctness of
our implementation by using a QEMU [54] ARM virtual machine
that supports both PA and MTE and conducted performance eval-
uations using the Apple Mac Mini with an M1 processor running
Asahi Linux [41]. The M1 processor includes the PA extension;
however, to our knowledge, there is no publicly available hardware
with ARM MTE. The QEMU’s MTE emulation is mature to a point
where it is used for developing a MTE-based security feature for
the Linux kernel to be used in the near future [16]. We follow the
method from a previous work [43] that emulated the worst-case
performance impact of MTE by using MTE analogs. We insert the
MTE analogs to replace the tagging instructions in our tagged heap
memory allocator and also modify Capacity’s instrumentation to
automatically insert the MTE analogs in places of LLVM’s MTE
intrinsics.

7.1 Microbenchmarks

We perform a set of isolated microbenchmarks on the syscalls
intervened by the reference monitor, libcapacity API functions,
and the instrumentation. The results are listed in Table 2.

System call latency with reference monitor.We measured
the average latency of Capacity-protected syscall used in our evalu-
ated applications that authenticate file paths and FDs, and compared
them against un-protected syscalls. The overhead induced by Ca-
pacity includes the latency from syscall hooking and Capacity’s
reference authentication. Our results reported an average of 2.65%
across the measured syscalls. This shows the efficiency of Capacity
reference monitor design that fully utilizes hardware acceleration
provided by PA, not to mention the simplicity of capability where

882

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

Domain Isolated Objects {Ref. types}
Domain

Switches

Auth.

Syscalls

A Executed PACs Executed AUTs

PACK𝐷𝐵
PACK𝐷𝐴

AUTK𝐷𝐵
AUTK𝐷𝐴

N
G
I
N
X
+
L
i
b
r
e
S
S
L

Connection Server socket {FD }
Client connection socket {FD } 2 16 − − 104 − 590

Handshake
Server priv. key {PATH, FD, PTR }
TLS session key {PTR }
Client connection socket {FD ‡}

3 18 4 9 10.1K 13 134K

Session TLS session key {PTR ‡}
Client connection socket {FD ‡}

7/8/10/13
/22/37/70†

14/16/20/28
/44/76/140† 3 43/49/61/85

/133/229/421†
818/852/917/1K
/1.3K/1.8K/2.9K†

3.4K/6.5K/12K/25K
/50K/99K/199K†

7.7K/10K/14K/24K
/42K/79K/154K†

Ambient − − 94/99/100/109
/121/145/193† − − 33.6K − 164K

S
S
H

PrivKey Client private key {PATH,FD,PTR } 1 72 55 18 6K 24 33.5K

Ambient − − 37 − − 14.7K − 114K

w
g
e
t

FileDownload Downloaded file {PATH,FD,PTR } 3 325 1 129 3K 385 8.6K

Ambient − − 131 − − 703 − 1.6K

† Measurements from {16K,32K,64K,128K,256K,512K,1024K} HTTPS file size configurations ‡ Delegated references
A = Number of domain-private memory allocations

Table 3: Capacity domains and protected assets in evaluated applications. Columns 3-9 show runtime measurements of

Capacity operations executed during a single iteration of {HTTPS file transfer (NGINX) / SSH handshake / wget file download}.

the reference alone is enough to make access control decisions
without complex bookkeeping on domains and resources. Also, this
overhead is imposed only on the Capacity-enabled processes.
libcapacity APIs latencies. The overhead of capac_-

malloc() and capac_free() originates from domain authentica-
tion and MTE-based memory tagging. Measuring the latency of do-
main private memory allocation and free on blocks of 1KB, capac_-
malloc() and capac_free() reported approximately 114.6% and
154.4% . capac_enter and capac_exit, capac_delegate_ptr,
capac_delegate_fd and capac_limit_fd are simple ioctl calls
to the in-kernel reference monitor, where only capac_limit_fd
does not requires the key switching. Their latencies are on par
with general syscalls. Besides a roundtrip to the kernel mode, we
suspect their main source of overhead is from writing to the PA
key registers.

nbench-byte benchmark. We measure the isolated overhead
of Capacity’s instrumentation on the nbench-byte [62] bench-
mark, which is also used by several previous works on PA-based
defenses [27, 38]. nbench-byte consists of 11 CPU and memory
subsystem benchmarks that allow us to measure the overhead of
Capacity in general computations. Figure 6 shows the results of

Assign. LU
decomp.

String
sort

Bitfield Numeric
sort

Neural
net

Fourier Idea Huffman FP
emulation

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 o
ve

rh
ea

d

Figure 6: Overhead of instrumented nbench-byte, normalized

to uninstrumented baseline and sorted by overhead.

nbench-byte compiled with Capacity’s instrumentation that en-
forces PA on on-save signing and on-load authentication of all in-
program pointers. On average, Capacity’s instrumentation incurs
11.37% performance degradation to the uninstrumented version.

7.2 Adapting Capacity to real-world programs

We exemplify Capacity’s capability domains by adapting it to sev-
eral open-source applications studied by previous isolation frame-
works [8, 39, 63]. These applications include OpenSSH’s ssh util-
ity [22], wget file download utility [21], and NGINX webserver [17]
compiled along the TLS library LibreSSL [53]. Representative code
examples of our modifications can be found in the appendix of
the extended version of this paper [15]. The applications are also
compiled with the Capacity-instrumented musl libc [20] adapted
to handle signed pointers in system call arguments. Table 3 sum-
marizes the Capacity domains in protected applications and their
protected assets.

OpenSSH’s ssh (v9.3p1).We demonstrate Capacity’s program
secrets protection throughout their life-cycles with ssh. We compile
OpenSSH to use its built-in crypto library and use Capacity to
isolate the private key of ssh. We introduce a new domain, Privkey,
with exclusive access to the private key file and its in-memory buffer.
This domain spans from when the private key is loaded from the
file system until after the login operation succeeds. We then assign
the static private key to the domain, allocate the private key buffer
(struct sshkey) in private memory, annotate its pointers with
DOM_PRIV, and finally wrap functions that access the private key
within domain entry gates. These changes require about 50 LoC
changes over 13 functions across 5 files.
wget (v1.21.2).We use Capacity to isolate the file received from

the internet in wget to demonstrate least-privilege compartmental-
ization. We create a domain called FileDownload with exclusive
access to the downloaded buffer and the output file path/FD. We

883

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

16 32 64 128 256 512 1024
Requested file size (KB)

0

2000

4000

6000

8000

Re
qu

es
ts

 p
er

 se
co

nd

6.6K
5.5K

3.5K
2.9K

1.8K 1.5K 933 775 474 391 237 197 119 98

Baseline w/ Capacity Capacity's overhead

16 32 64 128 256 512 1024
Requested file size (KB)

0
5000

10000
15000
20000
25000 23.3K

20.4K

13K 11.5K
7.9K 7K

4.3K 3.7K 2.3K 2K 1.2K 1K 606 5060

10

20

30

0

10

20

30

O
ve

rh
ea

d
(%

)

(a) Single-threaded (b) Multi-threaded (8 Threads)

Figure 7: Baseline webserver vs. Capacity-enabled webserver throughput benchmark performed with local ab client.

then modify the initialization of wget to assign the output file ac-
cess to FileDownload, and use cap_limit_fd to revoke all other
attributes from the file’s FD except CAP_WRITE. This ensures that
the domain has write-only access to the output FD2. The domain en-
capsulates the function retrieve_url, which fetches the requested
file from a URL into a capac_malloc-allocated buffer before writ-
ing into the output file’s FD. We also annotate pointers variables
that point to the downloaded file in memory with CAPAC_VAR. The
total modifications to wget is about 30 LoC.

NGINX (v1.23.0) + LibreSSL (v3.5.3). We use the NGINX web-
server and its crypto library, LibreSSL, to demonstrate the multi-
domain interaction of Capacity. We create three domains in the
webserver, namely Handshake, Session, and Connection to iso-
late the server private key, session keys, and connection sockets
with the least privilege principle in mind. Table 3 displays a sum-
mary of the webserver domains and their isolated resources. We
modified 223 LoC in LibreSSL and 114 LoC in NGINX.

Figure 8 illustrates the main operations and their interaction
with domain-private objects in domain Handshake and Session.
Handshake, which consists of 5 NGINX and 2 LibreSSL functions
endowed with exclusive rights to the server private key.

Session protects session keys by hosting 17 functions, mostly
located inside LibreSSL’s AES-GCM implementation. We generate a
unique instance ID and use it as the modifier for each session since
a session’s resources are mostly temporary and can be isolated.
As Handshake execution finishes, it produces a TLS session key,
which is to be delegated to the corresponding Session instance
using the API capac_delegate_ptr (Table 1). The domain-private
stack is a noteworthy feature of Capacity used in Session. When
a function performs complex cryptographic operations, we use
2While wget already make the file handle write-only, Capacity enables more fine-
grained in-process access control that supports read and write domains.

Open
Private Key File

Load
Private Key File TLS Handshake

PrivKey
PATH

PrivKey
FD

PrivKey
PTR

Session Key
PTR

DOM_HANDSHAKE
DOM_SESSION [5]

Encrypt/Decrypt
Packets

Session Key
PTR

Delegate

Figure 8: Capacity enables life-cycle private key protection

and per-instance isolation of session keys in the NGINX web-

server.

Program Baseline (ms) w/ Capacity (ms) Overhead (%)

ssh 347.35 348.62 0.37
wget 17.12 18.14 5.95

Table 4: Capacity overheads on ssh and wget.

DOM_PRIV_STACK instead of tracking the data flow of sensitive data
bouncing around in the function’s local variables.

Finally, Connectionmanages the webserver’s sockets. We wrap
the functions that handle sockets inside its domain switches of Con-
nection, such that when the server requests its server socket FD
using sys_socket, the returned FD is domain-private. On client
connection requests, Connection invokes sys_accept4 with the
server socket as the input and retrieves a client socket FD. Connec-
tion then delegate the returned client socket FD to Handshake,
using capac_delegate_fd. After TLS handshaking, Handshake
again delegates the socket FD to Session. Notably, CAP_SOCKET
attribute is enabled by default when socket FDs are created, seg-
regating socket and non-socket FDs in syscalls without the user’s
intervention.

7.3 Application performance benchmark

We perform performance benchmarks on the adapted applications.
These applications run with all design components of Capacity
explained thus far, including compile-time instrumentation, compat-
ibility fixes, libcapacity, the kernel-level reference monitor, and
backward and forward-edge CFI. To accurately profile the source
of Capacity’s performance overhead, we inserted probes into the
reference monitor, libcapacity, and the instrumented program
code to collect runtime execution count of Capacity operations
during a single iteration of execution, as shown in Table 3.
ssh and wget. For ssh, we measure the average overhead of

connecting to a local server 10, 000 times and compare it against
the unmodified version. We evaluate the protected wget by timing
the average overhead in latency when requesting a 1MB file from a
local http webserver 10, 000 times compared to the baseline. Table 4
displays the Capacity-incured performance overheads in ssh and
wget, which shows only minimal slowdown for both applications.

NGINX + LibreSSL. We evaluate the throughput of the Ca-
pacity-enabled NGINX webserver against its unmodified coun-
terpart, which we shall call Baseline. We use the Apache bench-
marking tool, ab [23] locally (i.e., no network latency) to measure

884

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

the number of requests processed per second, with varying file
sizes, {16K, 32K ... 1M}, on also single-threaded and multi-threaded
(8 threads) settings. 100, 000 requests were performed, and the
keep-alive option was used to avoid re-initializing the connections.
The cipher suite negotiated between the client and the server was
ECDHE-RSA-AES256-GCM-SHA384.

The webserver benchmark results are displayed in Figure 7,
which shows the average performance degrades about 17% for the
single-threaded server and 13.54% for the multi-threaded settings
across all file size configurations. The latency measurements for
Capacity operations from our microbenchmark (Table 2) allow us
to reason that the performance overheads from the reference moni-
tor and libcapacity would be very limited. The varied file sizes
allow us to capture the characteristics of Capacity’s performance
overhead, which increases as the requested file sizes increase. Along
with the runtime statistic collected in Table 3, it can be observed
that Capacity’s overhead protecting pointers and memory is pro-
portional to the amount of computation. We can conclude that the
performance overhead of Capacity would be predominantly from
the increased number of instructions due to instrumentation.

8 SECURITY ANALYSIS & DISCUSSION

In this section, we use the security requirements outlined in §3.2
to analyze the security of Capacity. We show that these security
requirements are achieved throughout the life cycles of program
resources. We also discuss the possible mitigation for brute-forcing
attacks at the end of the section.

Non-impersonable domains (R1). The domain entry ex-
plained in §4 renders invoking domain switches into arbitrary do-
mains in unintended locations impossible. Also, our trusted domain
ID fetching and in-register tag protection prevent the attacker from
impersonating a domain by corrupting the currently activating
domain ID spilled onto the stack or accessible globally.

Complete mediation (R2). Capacity’s reference monitor en-
sures the use of FD and PATH in syscalls is always authenticated,
and all userspace FDs are signed. Its whole-program instrumenta-
tion guarantees the signing and authentication of all ambient and
domain-private pointers. Bypassing PA checks by jumping into
non-entry locations of a function is infeasible with the presence of
CFI. Hence, assuming no uninstrumented code, Capacity achieves
complete mediation of all resource usage.

Non-reusable references (R3). Under Capacity’s protection,
a non-owner domain cannot access a protected file since the in-
ode signature check will fail during file import. A domain-private
FD leaked to another domain remains unusable thanks to our FD
authentication scheme using the domain key. The reference mon-
itor also prevents the OS from reusing FD numbers after one is
deallocated. In addition, a domain compromised by the adversary
cannot reuse in-memory pointers pointing to other domains’ pri-
vate memory. Due to domain key mismatch, the authentication
would fail at pacdb sites. A pointer signed with K𝐷𝐵 would also
fail to authenticate at pointer load sites where K𝐷𝐴 is used.

Non-forgable references (R4). It is impossible to forge an
illegal path reference to a protected file object since path string
references are resolved to their in-kernel data structures. Forging
an FD in the userspace is also prevented using a secret (to userspace)

modifier, which allows the kernel to remain the sole issuer of un-
forgeable and protected file descriptors.

With two methods, the adversary may forge a tagged and signed
pointer to access domain-private memory. First, the adversary may
overwrite an existing in-memory pointer through memory corrup-
tion. Such attacks are thwarted by the PA-based pointer authentica-
tion, whose primary purpose is to detect corruptions of in-memory
pointers. Second, through code reuse attacks, the adversary may
sign arbitrarily manipulated data (e.g., 64-bit data with the victim’s
domain tag and target sensitive memory address) using the avail-
able pacda and pacdb gadgets. For pacdb gadgets, Capacity PA
contexts created by key switching force the attacker to use them
within the target domain. We consider the isolated domains small
enough so that it can be verified that the domain code is free of
signing gadgets. However, this is a substantial and realistic threat
when completely safe TCB is not guaranteed [35, 73], and a scanner
to remove such gadgets could be utilized [73]. Given that no such
convenient gadgets exist in Capacity domains, the adversary may
still launch an extremely sophisticated attack by finding gadgets
that (1) leak the sensitive memory address, (2) create a pointer and
add the appropriate tag to it, (3) use pacda to create an ambient
pointer that points to domain-private area, and (4) pass the signed
pointer to an autda site. Capacity’s instrumentation currently ze-
ros out the tag of ambient pointers before signing them, rendering
such code reuse attacks infeasible.

Brute-forcing atttacks. An attacker can exploit certain ideal
situations, such as infinite thread spawning [5], to try different AC
values until authentication succeeds. This is an inherent weakness
with PA-based security. Such attacks can be overcome by placing
thresholds on the number of crashed threads due to PA traps and
systems call authentication failures [73].

9 RELATEDWORK

We explain the previousworks that are closely related to ourwork in
terms of security principle (capability), use of hardware primitives
(ARM PA and MTE), and objective (compartmentalization).

Capability-based resource access control. Capability-based
access control has long been sought after due to its advantages
in achieving the principle of least privilege [9, 13, 18, 31, 44, 45,
61, 65, 69, 70, 72]. Previous works explored capabilities in OS ac-
cess control and memory safety. In the OS sphere, Capsicum [69]
introduced process-level FD capabilities to UNIX and has been
adapted by FreeBSD [50]. The SeL4 microkernel provides secure
and fine-grained access to system resources through capability
tokens [31]. Toward applying capabilities principles for memory
safety, CHERI [72] introduced a CPU architecture with built-in
support for capability-based memory access control. Subsequent
works introduced extensions to the CHERI architecture with addi-
tional security features such as domain memory isolation [9, 12, 70].
Recently, Capstone [74] revised CHERI’s base design to support
revocable delegation and an extensible privilege hierarchy.

Unlike previous capability systems, Capacity’s capabilities can
be consistently applied to file and memory object references. Com-
pared to Capsicum, Capacity does not require isolating program
components into processes; its capability model seeks to achieve

885

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

least-privilege domains within a process. Moreover, Capacity’s en-
forcement is much more lightweight thanks to hardware-assisted
cryptographic authentication, Compared to capability architectures
like CHERI, Capacity’s design must address the security require-
ments of capability on existing hardware features, e.g., complete
mediation of pointer uses since the processor does not enforce
them automatically. Also, without hardware support, Capacity
lacks fine-grained permissions that CHERI provides over pointers,
e.g., per-object read/write/execute capabilities.

PA and MTE-based software defenses. Many PA-based
runtime defense mechanisms have been proposed [1, 19, 27, 36–
38, 55, 73] and deployed in commodity systems [1, 55]. MTE-
supported bug detecting tools have been introduced [24, 40, 60]
with improved performance compared to software-only approaches.
Notably, PARTS [38] introduces a Data Pointer Integrity (DPI) pol-
icy that protects program-wide data and code pointers, but its
instrumentation framework is not evaluated on real-world appli-
cations. PacTight [27] enforces non-forgability, non-copyability,
non-dangling properties on only sensitive pointers with an intri-
cate signing and authentication scheme. PTauth [19] introduces
a PA-based use-after-free by authenticating pointers with their
pointed-to object.

Capacity introduces a robust framework for whole-program
instrumentation of pointer authentication. Moreover, previous PA-
based systems rely onmodifiers to establish different authentication
contexts. On the other hand, Capacity establishes authentication
contexts through its key switching mechanism and uses the modi-
fier to isolate references between domain instances. Hence, different
types of references can share a consistent authentication method
in kernel and userspace without a complicated modifier assign-
ment scheme. However, Capacity’s use of K𝐷𝐵 for the domain key
allows it to incorporate previous works on PA-based CFI into its
design [1, 37, 38, 73].

Intra-process compartmentalization. Several works have
leveraged x86 architecture’s PKU to protect program domains and
showed that PKU-based isolation significantly lower overhead com-
pared to process-based and Software Fault Isolation (SFI)-based isola-
tion [25, 30, 58, 63, 66]. Notably, ERIM [63] and Hodor [25] laid the
groundwork for utilizing PKU for intra-process isolation through a
meticulously designed call gate between domains.Capacity is moti-
vated by the underexplored design space for ARM-based in-process
compartmentalization and access control. Shred [8] proposed iso-
lating the memory of in-process execution units with AArch32’s
Domain memory protection, but the feature has been removed in
AArch64.

HAKC [43] is a framework for Linux device driver compart-
mentalization, also leveraging PA and MTE. Different from HAKC,
Capacity’s use of PA+MTE is specialized for memory and system
resources isolation in the userspace. In particular, with pre-defined
ACLs as PAmodifiers, HAKC’s pointer-use sites are tied to an access
control policy, regardless of the calling context. On the other hand,
Capacity’s pointer authentication scheme checks if the reference
is issued for the currently active domain, depending on the context
(the effective K𝐷𝐵). This key difference brings implications that are
pivotal in Capacity’s design. First, it allows PA contexts to span
across the user and kernel, enabling Capacity’s authentication
scheme without a complex user-kernel modifier sharing scheme.

Second, functions can be called from multiple domains; the AUT
authentication checks in the exact code location and uses differ-
ent keys and therefore authenticates differently for each domain
context.

Recently, there have been proposals for reference monitors better
suited for in-process isolation [48, 58, 59, 66]. Jenny [58] proposed
a secure and efficient syscall reference monitor that delegates ac-
cess control to userspace. `Switch [48] leverages implicit context
switches to delay the kernel resource context switching until a
syscall is performed to achieve better performance. While previous
works on reference monitors require developers to write filtering
rules to be applied to the monitor, Capacity’s cryptographically-
secured FD references are coherently built into the program’s se-
mantic, and their PA-assisted authentication is both transparent
and efficient.

Isolation boundaries. Capacity currently only provides intra-
procedural sensitivity annotation propagation. Automated whole-
program and inter-procedural tracking of secret propagation is
a field of its own, and previous works have proposed methods
towards the objective [10, 28, 39, 47]. We expect that Capacity can
incorporate such methods in the future, although it is currently
out of the scope of this paper, which focuses on introducing a new
isolation mechanism. On another note, a recent work [35] discussed
the perils of artificially drawn in-process boundaries and their
interfaces. Such attack surface must be eliminated or minimized
through validation and interface narrowing when porting existing
programs to use Capacity. If a program is redesigned or written
from scratch with Capacity, then a conscious effort can be made to
have a secure interface by design. The evaluated prototypes focus
on showing the feasibility of Capacity as an isolation mechanism,
and we regard the validation process to be an orthogonal issue.

10 CONCLUSION

This paper proposed a novel design called Capacity that enables
the compartmentalization of in-process domains by employing
hardware-accelerated and cryptographically-authenticated capabil-
ities. We presented complete mediation and authentication schemes
that satisfy the security requirements of capability systems through-
out the life cycle of sensitive domain objects and addressed com-
patibility issues when adapting PA+MTE-based instrumentation
for large programs. We evaluated Capacity through microbench-
marks and real-world applications, including an NGINX webserver
prototype in which the important resources are protected in secure
domains. The results show the efficacy of Capacity the in terms of
performance with an average webserver throughput overhead of
17% for single-threaded and 13.54% for multi-threaded experiments.

ACKNOWLEDGMENTS

We deeply appreciate the anonymous reviewers for their construc-
tive comments and feedback. This work was supported by grants
funded by the Korean government: the National Research Founda-
tion of Korea (NRF) grant (NRF-2022R1C1C1010494), Institute of
Information & Communications Technology Planning & Evalua-
tion (IITP) grants (No. 2022-0-00688, No. 2022-0-01199), and Korea
Internet & Security Agency (KISA) grant (1781000009).

886

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee

REFERENCES

[1] Apple. 2021. Apple Platform Security. https://manuals.info.apple.com/
MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf. Last ac-
cessed May 05 , 2021,.

[2] ARM Ltd. 2021. Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile. https://developer.arm.com/documentation/ddi0487/ga. Last
accessed Nov 18 , 2021,.

[3] ARM Ltd. 2022. Armv8-M Architecture Reference Manual. https://developer.arm.
com/documentation/ddi0553/bs. Last accessed May 15 , 2022,.

[4] ARM Ltd. 2023. ARMv8.5-A Memory Tagging Extension. https:
//developer.arm.com/-/media/ArmDeveloperCommunity/PDF/Arm_Memory_
Tagging_Extension_Whitepaper.pdf. Last accessed March 10 , 2022,.

[5] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In 2014 IEEE Symposium on Security and Privacy. 227–242.
https://doi.org/10.1109/SP.2014.22

[6] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-privilege Compartments. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation
(San Francisco, California) (NSDI’08). USENIX Association, Berkeley, CA, USA,
309–322.

[7] David Brumley and Dawn Song. 2004. Privtrans: Automatically Partitioning
Programs for Privilege Separation. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (San Diego, CA) (SSYM’04). USENIX Association,
Berkeley, CA, USA, 5–5.

[8] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-Grained Execution Units with Private Memory. In 2016 IEEE Sympo-
sium on Security and Privacy (SP). 56–71.

[9] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou,
Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton,
Stacey Son, Michael Roe, Simon W. Moore, Peter G. Neumann, Ben Laurie, and
Robert N.M. Watson. 2017. CHERI JNI: Sinking the Java Security Model into the
C. SIGARCH Comput. Archit. News 45, 1 (apr 2017), 569–583. https://doi.org/10.
1145/3093337.3037725

[10] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias
Payer. 2018. ACES: Automatic Compartments for Embedded Systems. In 27th
USENIX Security Symposium (USENIX Security 18). USENIX Association, Balti-
more, MD, 65–82.

[11] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun
and Franziska Roesner (Eds.). USENIX Association, 1409–1426.

[12] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann,
Simon W. Moore, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
J. EdwardMaste, AlfredoMazzinghi, Edward Tomasz Napierala, RobertM. Norton,
Michael Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-Time Environment. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 379–393. https://doi.org/10.1145/3297858.3304042

[13] Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multi-
programmed Computations. Commun. ACM 9, 3 (March 1966), 143–155.

[14] Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection with Low
Fat Pointers (CC 2016). Association for Computing Machinery, New York, NY,
USA, 132–142. https://doi.org/10.1145/2892208.2892212

[15] Kha Dinh Duy, Kyuwon Cho, Taehyun Noh, and Hojoon Lee. 2023. Capacity:
Cryptographically-Enforced In-Process Capabilities for Modern ARM Architec-
tures (Extended Version). https://doi.org/10.48550/arXiv.2309.11151

[16] Eklektix. 2022. kasan: add hardware tag-based mode for arm64. https://lwn.net/
Articles/831624/. Last accessed Jan 14 , 2022,.

[17] Inc. F5 Networks. 2023. Advanced Load Balancer, Web Server, & Reverse Proxy.
https://www.nginx.com. Last accessed Jan 14 , 2022,.

[18] R. S. Fabry. 1974. Capability-Based Addressing. Commun. ACM 17, 7 (jul 1974),
403–412. https://doi.org/10.1145/361011.361070

[19] RezaMirzazade farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Temporal
Memory Safety via Robust Points-to Authentication. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association.

[20] Rich Felker. 2022. musl libc. https://musl.libc.org.
[21] Free Software Foundation. 2023. GNUWget. https://www.gnu.org/software/wget.

Last accessed Jan 14 , 2022,.
[22] OpenBSD Foundation. 2023. OpenSSH. https://www.openssh.com. Last accessed

Jan 14 , 2022,.
[23] The Apache Software Foundation. 2022. ab - Apache HTTP server benchmarking

tool. https://httpd.apache.org/docs/2.4/programs/ab.html. Last accessed Jan 14 ,
2022,.

[24] Vincenzo Frascino. 2020. Memory Tagging Extension (MTE) in AArch64
Linux. https://www.kernel.org/doc/html/latest/arm64/memory-tagging-

extension.html. Last accessed March 10 , 2022,.
[25] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,

Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-process iso-
lation for high-throughput data plane libraries. In 2019 USENIX Annual Technical
Conference (USENIXATC 19). 489–504.

[26] Intel Corporation. 2021. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Number 325462-075US.

[27] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin Jang, and
Changwoo Min. 2022. Tightly Seal Your Sensitive Pointers with PACTight.
https://doi.org/10.48550/ARXIV.2203.15121

[28] X. Jin, X. Xiao, S. Jia, W. Gao, H. Zhang, D. Gu, S. Ma, Z. Qian, and J. Li. 2022.
Annotating, Tracking, and Protecting Cryptographic Secrets with CryptoMPK.
In 2022 2022 IEEE Symposium on Security and Privacy (SP) (SP). IEEE Computer
Society, Los Alamitos, CA, USA, 473–488. https://doi.org/10.1109/SP46214.2022.
00028

[29] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Applications..
In USENIX Annual Technical Conference, FREENIX Track (2003-09-03). USENIX,
273–284.

[30] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-Safe:
Automatically Locking down the Heap between Safe and Unsafe Languages. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,
132–148. https://doi.org/10.1145/3492321.3519582

[31] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. SeL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). Association
for Computing Machinery, New York, NY, USA, 207–220. https://doi.org/10.
1145/1629575.1629596

[32] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 147–163.

[33] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre
DeHon. 2013. Low-Fat Pointers: Compact Encoding and Efficient Gate-Level
Implementation of Fat Pointers for Spatial Safety and Capability-Based Security.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security (Berlin, Germany) (CCS ’13). Association for Computing Machinery,
New York, NY, USA, 721–732. https://doi.org/10.1145/2508859.2516713

[34] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 1441–1454.

[35] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Yi Chen, Felipe Huici, Nathan Dautenhahn,
and Pierre Olivier. 2023. Assessing the Impact of Interface Vulnerabilities in
Compartmentalized Software. In Proceedings 2023 Network and Distributed System
Security Symposium. NDSS.

[36] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and
Chao Zhang. 2022. PACSan: Enforcing Memory Safety Based on ARM PA. https:
//doi.org/10.48550/ARXIV.2202.03950

[37] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg, and N.
Asokan. 2021. PACStack: an Authenticated Call Stack. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association.

[38] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 177–194.

[39] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting General Pointers
in Automatic Program Partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2359–2371.
https://doi.org/10.1145/3133956.3134066

[40] Arm Ltd. 2022. -mmemtag-stack, -mno-memtag-stack. https:
//developer.arm.com/documentation/100067/0612/armclang-Command-
line-Options/-mmemtag-stack---mno-memtag-stack. Last accessed Jan 14 ,
2022,.

[41] Hector Martin, Alyssa Rosenzweig, Asahi Lina, Dougall Johnson, Sven Peter,
Mark Kettenis, Martin Povišer, and Janne Grunau. 2022. Asahi Linux. https:
//asahilinux.org. Last accessed March 08 , 2022,.

[42] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015. CCFI:
Cryptographically Enforced Control Flow Integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 941–951.

887

 https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
 https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://developer.arm.com/documentation/ddi0487/ga
https://developer.arm.com/documentation/ddi0553/bs
https://developer.arm.com/documentation/ddi0553/bs
https://developer.arm.com/-/media/Arm Developer Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm Developer Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm Developer Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/3093337.3037725
https://doi.org/10.1145/3093337.3037725
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.48550/arXiv.2309.11151
https://lwn.net/Articles/831624/
https://lwn.net/Articles/831624/
https://www.nginx.com
https://doi.org/10.1145/361011.361070
https://musl.libc.org
https://www.gnu.org/software/wget
https://www.openssh.com
https://httpd.apache.org/docs/2.4/programs/ab.html
 https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html
 https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html
https://doi.org/10.48550/ARXIV.2203.15121
https://doi.org/10.1109/SP46214.2022.00028
https://doi.org/10.1109/SP46214.2022.00028
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.48550/ARXIV.2202.03950
https://doi.org/10.48550/ARXIV.2202.03950
https://doi.org/10.1145/3133956.3134066
 https://developer.arm.com/documentation/100067/0612/armclang-Command-line-Options/-mmemtag-stack---mno-memtag-stack
 https://developer.arm.com/documentation/100067/0612/armclang-Command-line-Options/-mmemtag-stack---mno-memtag-stack
 https://developer.arm.com/documentation/100067/0612/armclang-Command-line-Options/-mmemtag-stack---mno-memtag-stack
https://asahilinux.org
https://asahilinux.org

Capacity: Cryptographically-Enforced In-Process Capabilities

for Modern ARM Architectures CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[43] DerrickMcKee, Yianni Giannaris, Carolina Ortega Perez, Howard Shrobe,Mathias
Payer, Hamed Okhravi, and Nathan Burow. 2022. Preventing Kernel Hacks with
HAKC. In Proceedings 2022 Network and Distributed System Security Symposium.
NDSS, Vol. 22. 1–17.

[44] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Caja:
Safe active content in sanitized JavaScript. (June 7 2008).

[45] Myoung Jin Nam, Periklis Akritidis, and David J. Greaves. 2019. FRAMER: a
tagged-pointer capability system with memory safety applications. In Proceedings
of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San
Juan, PR, USA, December 09-13, 2019, David Balenson (Ed.). ACM, 612–626. https:
//doi.org/10.1145/3359789.3359799

[46] Oracle. 2022. Using Application Data Integrity (ADI). https://docs.oracle.com/
cd/E37838_01/html/E61059/gqajs.html. Last accessed March 02 , 2022,.

[47] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychronakis. 2021.
DynPTA: Combining Static and Dynamic Analysis for Practical Selective Data
Protection. In 2021 IEEE Symposium on Security and Privacy (SP). 1919–1937.
https://doi.org/10.1109/SP40001.2021.00082

[48] D. Peng, C. Liu, T. Palit, P. Fonseca, A. Vahldiek-Oberwagner, and M. Vij. 2023.
`Switch: Fast Kernel Context Isolation with Implicit Context Switches. In 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alami-
tos, CA, USA, 2956–2973. https://doi.org/10.1109/SP46215.2023.10179284

[49] Massimiliano Poletto and Vivek Sarkar. 1999. Linear Scan Register Allocation.
ACM Trans. Program. Lang. Syst. 21, 5 (sep 1999), 895–913. https://doi.org/10.
1145/330249.330250

[50] FreeBSD Project. 2023. FreeBSD Manual Pages. https://www.freebsd.org/cgi/
man.cgi?capsicum(4).

[51] LLVM Project. 2022. [AArch64] - return address signing. https://reviews.llvm.
org/D49793. Last accessed May 05 , 2022,.

[52] LLVM Project. 2022. The LLVM Compiler Infrastructure. https://llvm.org. Last
accessed Jan 14 , 2022,.

[53] OpenBSD Project. 2022. LibreSSL. https://www.libressl.org. Last accessed Jan 14
, 2022,.

[54] QEMU. 2022. QEMU: A generic and open sourcemachine emulator and virtualizer.
https://www.qemu.org. Last accessed March 08 , 2022,.

[55] QUALCOMM TECHNOLOGIES, INC. 2017. Pointer authentication on
ARMv8.3. https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8-3.pdf. Last accessed Nov 15 , 2021,.

[56] Red Hat. 2021. What is SELinux. https://www.redhat.com/en/topics/linux/what-
is-selinux. Last accessed Apr 28 , 2021,.

[57] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai Pandey, Vasileios P
Kemerlis, Mathias Payer, Adam Bates, Jonathan M Smith, Andre DeHon, et al.
2021. `SCOPE: A Methodology for Analyzing Least-Privilege Compartmental-
ization in Large Software Artifacts. In 24th International Symposium on Research
in Attacks, Intrusions and Defenses. 296–311.

[58] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In 31st
USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 936–952. https://www.usenix.org/conference/usenixsecurity22/
presentation/schrammel

[59] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys – Effi-
cient In-Process Isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 1677–1694.

[60] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. https://doi.org/10.48550/ARXIV.1802.09517

[61] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999. EROS: A Fast
Capability System. In Proceedings of the Seventeenth ACM Symposium onOperating
Systems Principles (Charleston, South Carolina, USA) (SOSP ’99). Association for
Computing Machinery, New York, NY, USA, 170–185.

[62] Uwe F. Mayer. 2017. Linux/Unix nbench. https://www.math.utah.edu/~mayer/
linux/bmark.html. Last accessed March 08 , 2022,.

[63] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, efficient in-process isola-
tion with protection keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). 1221–1238.

[64] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cristiano
Giuffrida. 2018. Type-After-Type: Practical and Complete Type-Safe Memory
Reuse. In Proceedings of the 34th Annual Computer Security Applications Conference
(San Juan, PR, USA) (ACSAC ’18). Association for Computing Machinery, New
York, NY, USA, 17–27. https://doi.org/10.1145/3274694.3274705

[65] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris Hawblitzel,
Deyu Hu, and Dan Spoonhower. 1999. J-Kernel: A Capability-Based Operating
System for Java. Springer Berlin Heidelberg, Berlin, Heidelberg, 369–393. https:
//doi.org/10.1007/3-540-48749-2_17

[66] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,
266–282. https://doi.org/10.1145/3492321.3519560

[67] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and Efficient In-Process Monitor (and Library) Protection with Intel MPK.
In Proceedings of the 13th European Workshop on Systems Security (Heraklion,
Greece) (EuroSec ’20). Association for Computing Machinery, New York, NY, USA,
7–12. https://doi.org/10.1145/3380786.3391398

[68] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. Seimi: Efficient and
secure smap-enabled intra-process memory isolation. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 592–607.

[69] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.
Capsicum: Practical Capabilities for UNIX. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings. USENIX Association, 29–
46.

[70] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert M. Norton, Michael Roe, Stacey D. Son,
and Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society,
20–37.

[71] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Mangard,
and Ahmad-Reza Sadeghi. 2019. TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V. In Proceedings 2019 - Network and Distributed System
Security Symposium (NDSS). Internet Society. https://doi.org/10.14722/ndss.2019.
23068

[72] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M.
Norton, andMichael Roe. 2014. The CHERI capabilitymodel: Revisiting RISC in an
age of risk. In ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society,
457–468.

[73] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2021. In-
Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authen-
tication. https://doi.org/10.48550/ARXIV.2112.07213

[74] Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, and
Prateek Saxena. 2023. Capstone: A Capability-based Foundation for Trustless
Secure Memory Access. In 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, Anaheim, CA, 787–804. https://www.usenix.org/
conference/usenixsecurity23/presentation/yu-jason

[75] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. 2008.
Hardware Enforcement of Application Security Policies Using Tagged Memory.
In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings, Richard Draves
and Robbert van Renesse (Eds.). USENIX Association, 225–240.

888

https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/3359789.3359799
https://docs.oracle.com/cd/E37838_01/html/E61059/gqajs.html
https://docs.oracle.com/cd/E37838_01/html/E61059/gqajs.html
https://doi.org/10.1109/SP40001.2021.00082
https://doi.org/10.1109/SP46215.2023.10179284
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://www.freebsd.org/cgi/man.cgi?capsicum(4)
https://www.freebsd.org/cgi/man.cgi?capsicum(4)
https://reviews.llvm.org/D49793
https://reviews.llvm.org/D49793
https://llvm.org
https://www.libressl.org
https://www.qemu.org
 https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
 https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://doi.org/10.48550/ARXIV.1802.09517
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html
https://doi.org/10.1145/3274694.3274705
https://doi.org/10.1007/3-540-48749-2_17
https://doi.org/10.1007/3-540-48749-2_17
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.14722/ndss.2019.23068
https://doi.org/10.48550/ARXIV.2112.07213
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

	Abstract
	1 Introduction
	2 Background
	2.1 Pointer Authentication (PA)
	2.2 Memory Tagging Extension (MTE)

	3 Overview
	3.1 Threat model
	3.2 Security requirements
	3.3 Subjects and Objects
	3.4 Programming model overview

	4 Domain Switching and Authentication
	5 File System Object Isolation
	5.1 Enforcing domain-private file-system paths
	5.2 Enforcing domain-private file descriptors

	6 Domain memory isolation
	6.1 Domain-private memory tagging
	6.2 Domain-aware pointer authentication
	6.3 Handling compatibility issues

	7 EVALUATION
	7.1 Microbenchmarks
	7.2 Adapting Capacity to real-world programs
	7.3 Application performance benchmark

	8 SECURITY ANALYSIS & DISCUSSION
	9 RELATED WORK
	10 Conclusion
	Acknowledgments
	References

