
INCOGNITOS: A Practical Unikernel Design for
Full-System Obfuscation in Confidential Virtual Machines

Kha Dinh Duy, Jaeyoon Kim, Hajeong Lim, and Hojoon Lee∗

Department of Computer Science and Engineering,
Sungkyunkwan University

Abstract—Recent works have repeatedly proven the practical-
ity of side-channel attacks in undermining the confidentiality
guarantees of Trusted Execution Environments such as Intel
SGX. Meanwhile, the trusted execution in the cloud is witness-
ing a trend shift towards confidential virtual machines (CVMs).
Unfortunately, several side-channel attacks have survived the
shift and are feasible even for CVMs, along with the new
attacks discovered on the CVM architectures. Previous works
have explored defensive measures for securing userspace en-
claves (i.e., Intel SGX) against side-channel attacks. However,
the design space for a CVM-based obfuscation execution engine
is largely unexplored.

This paper proposes a unikernel design named INCOGNI-
TOS to provide full-system obfuscation for CVM-based cloud
workloads. INCOGNITOS fully embraces unikernel principles
such as minimized TCB and direct hardware access to render
full-system obfuscation feasible. INCOGNITOS retrofits two
key OS components, the scheduler and memory manage-
ment, to implement a novel adaptive obfuscation scheme.
INCOGNITOS’s scheduling is designed to be self-sovereign
from the timer interrupts from the untrusted hypervisor with
its synchronous tick delivery. This allows INCOGNITOS to
reliably monitor the frequency of the hypervisor’s possession
of execution control (i.e., VMExits) and adjust the frequency
of memory rerandomization performed by the paging sub-
system, which transparently performs memory rerandomiza-
tion through direct MMU access. The resulting INCOGNITOS
design makes a case for a self-obfuscating unikernel as a
secure CVM deployment strategy while further advancing the
obfuscation technique compared to previous works. Evaluation
results demonstrate INCOGNITOS’s resilience against CVM
attacks and show that its adaptive obfuscation scheme enables
practical performance for real-world programs.

1. Introduction
Ensuring the confidentiality of computation in untrusted

environments such as the cloud remains a daunting challenge
even with the mature hardware-assisted TEE (Trusted Exe-
cution Environment) architectures [1], [2], [3]. A plethora of
attacks have demonstrated their effectiveness in undermining
the confidentiality of the userspace enclaves (e.g., Intel
SGX) [4], [5], [6], [7], [8], [9], [10], [11], [12].

*Corresponding author

Shift towards CVMs. Meanwhile, a shift from process-
based enclaves [13], [14], [15] such as Intel SGX towards
Confidential VMs (CVMs) is anticipated with the current and
upcoming hardware extensions. Intel’s Trust Domain Ex-
tensions (TDX) [3], AMD’s Secure Encrypted Virtualization
(SEV) [2], [16], and ARM’s Confidential Compute Architec-
ture (CCA) [17] all adopt the virtual machine construct as
TEE boundary. This means the OS kernel now resides within
the trust boundary, unlike the previous userspace enclave
design of Intel SGX [1].

Persisting side-channel threats in CVMs. Unfortu-
nately, side-channel attacks continue to pose a significant
threat to confidential computation even in the era of CVMs.
Controlled channel attacks that leverage Nested Page Faults
(NPFs) on the CVMs that can be observed in the untrusted
hypervisor [8] to monitor page-granular memory access
patterns have been an essential component of exploits on
AMD-SEV [18], [19], [20], [21], [22], [23]. Recent research
also showed that certain architectural and microarchitectural
side-channels are feasible on CVMs. For instance, last-
level cache attacks were shown to be feasible in AMD
SEV(-SNP) [24], despite the per-ASID cache line isolation
in place for virtual machines [25]. Also, Ciphertext side-
channel attacks [18], [21] were discovered, which exploit the
weak AES-XEX encryption mode used for CVM memory
encryption that uses the Host Physical Address (hPA) as a
tweak.

Obfuscated execution engines. Many previous works
have proposed obfuscated execution engines for SGX to
render the enclave execution more resilient against side-
channel attacks through compiler transformations [26], [27],
[28], [29]. Among them, Klotski [29] sought practicality
through periodic mini-page-granular (2KB) memory layout
rerandomization. The approach focuses on mitigating the
profiling stage of the side-channel secret extraction attack in
which the sensitive code and data locations are pinpointed.
Klotski seeks to be cost-effective, given that the fine-grained
data extraction attacks can only proceed when the profiling
stage is successful.

Termination on exit frequency threshold. Detecting
potential side-channel attack attempts through exit detec-
tion has been another pragmatic approach in mitigating
side-channel attacks against SGX enclaves [30], [31], [32],
[33]. Observing that most known practical side-channel
attacks require frequent Asynchronous Enclave Exit (AEX)

4192

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Kha Dinh Duy. Under license to IEEE.
DOI 10.1109/SP61157.2025.00222

20
25

 IE
EE

 S
ym

po
siu

m
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

 9
79

-8
-3

31
5-

22
36

-0
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SP

61
15

7.
20

25
.0

02
22

to acquire necessary temporal resolution on the channel,
Varys [30] sets a threshold for AEX rate and terminates
the enclave if the observed exit rate exceeds the threshold.

Limitations of existing defenses. We point out that the
policies mentioned above for pragmatic defense against side
channels have limitations. The fixed-rate periodic rerandom-
ization of previous work [29] is inefficient, as the costly
rerandomization is performed constantly regardless of ongo-
ing attacks, especially when the exit frequency is a plausible
measure for detecting ongoing attacks. Moreover, according
to our empirical analysis, the termination policy on high exit
frequency is not robust, at least when applied to SEV-SNP
CVMs. As such, such policies may experience false posi-
tives in benign workloads while carrying the risk of missing
low exit rate attacks. As we will show through our paper, a
design space exists for adaptive and robust obfuscation that
can reliably protect trusted execution workloads.

Towards obfuscation of CVMs. Besides the efficiency
(fixed-rate) and robustness (fixed threshold) limitations re-
garding the policies of obfuscation for SGX, the accu-
mulated research faces a shift towards CVMs [34], [35],
[36], [37], [38]. To our knowledge, no previous works have
discussed full-system obfuscation for a virtual machine. The
shift implicates an incomparably larger execution unit to be
obfuscated that includes an OS kernel. At the same time,
CVMs open up a new design space for obfuscation engines
with the highest degree of control (i.e., Ring 0) over the
hardware.

Our proposal. This paper introduces INCOGNITOS, a
novel unikernel design that safeguards unmodified programs
with the efficient rate-adaptive obfuscation scheme for SEV-
SNP CVMs. Moreover, as an operating system, INCOGNI-
TOS is binary-compatible; it can run unmodified workloads
compiled for the Unikraft unikernel. The minimal memory
footprint and complexity of unikernels render full-system
obfuscation feasible, including the memory regions of the
kernel itself.

INCOGNITOS efficiently retrofits the OS kernel subsys-
tems for constant system rerandomization by exploiting the
unique characteristics of unikernel, such as the user-kernel
homogeneity and direct hardware access [39], [40]. To
maintain the system’s resilience against side-channel attacks,
INCOGNITOS’s scheduling subsystem constantly monitors
the temporal resolution of the untrusted host on the system
and instructs the paging subsystem to rerandomize system
memory reactively.

INCOGNITOS also makes substantial advancements in
system memory obfuscation strategy with its novel rate-
adaptive rerandomization scheme. INCOGNITOS imple-
ments software synchronous timer ticks to break the depen-
dency on the untrustworthy hypervisor timer interrupts. At
each synchronous tick, INCOGNITOS scheduler measures
the occurrence of VMExit and executed instructions, or
VMExit per executed instructions, which directly represents
the adversary’s temporal resolution. Based on the measured
VMExit frequency that can be used to alert potential side-
channel attacks, INCOGNITOS scheduler commands its pag-
ing subsystem to regulate its rerandomization rate. INCOG-

NITOS’s design must overcome the challenges in designing
a robust VMExit frequency measurement system inside the
CVM.

INCOGNITOS’s paging subsystem is designed to per-
form full-system rerandomization, including user/kernel
pages and the page tables. While applying rerandomization
of the currently active regions of CVM memory, INCOG-
NITOS’s paging coherently integrates an ORAM-managed
page pool that hides traces of page-ins and page-outs.

We also comprehensively evaluated INCOGNITOS to
show its security and performance feasibility. Security
evaluations against real attacks highlight the robustness
of INCOGNITOS’s adaptive obfuscation and its resilience
against attacks. The microbenchmark and real-world appli-
cation benchmarks with NGINX and Redis demonstrate the
practicality of INCOGNITOS in terms of performance and
also its ability to support unmodified programs.

Lastly, we summarize the contributions of this paper as
follows:

• We propose a unikernel-based design for an efficient
obfuscation execution engine that achieves transparent
and full-system obfuscation.

• We propose a novel rate-adaptive obfuscation scheme to
address the inefficiency of fixed-rate rerandomization and
robustness issues of threshold-based termination schemes.

• We performed evaluations using microbenchmarks and
real-world workloads to show its effectiveness.

• We open source INCOGNITOS and all implementations
involved in its evaluation for future research and adop-
tion1.

2. Background and Related work

2.1. AMD SEV

Secure Encrypted Virtualization (SEV) isolates the exe-
cution of Confidential VMs (CVMs) from the untrusted hy-
pervisor through transparent memory encryption and access
control. SEV-Secure Nested Paging (SEV-SNP) is the newest
iteration of SEV that encrypts register states in VM Save
Area (VMSA) and addresses mapping integrity through a
hardware-maintained Reverse Mapping Table (RMP).

VMSA update on VMExits. When a VMExit transi-
tions from CVM to host execution, the processor automati-
cally updates the VMSA with exit information. Specifically,
the vmsa.exit_code field is set as the exit reason for the
current VMexit, e.g., 0x400 for Nested Page Fault (NPF).
This recording is unavoidable as it takes place at the hard-
ware level without the intervention of the hypervisor [16]
and is non-forgeable as the VMSA must be mapped as a
private CVM page that is automatically encrypted.

Mapping integrity with RMP. SEV-SNP provides map-
ping integrity through the RMP, which contains integrity-
protected mapping information such as the page’s state

1. Available at https://github.com/sslab-skku/incognitos

4193

(encrypted or non-encrypted) and mapping sizes. On any
mapping changes, the mapping information in the RMP is
invalidated; the CVM must validate this update with the
pvalidate instruction. The RMP is consulted by the CPU
on every memory access, which allows a CVM to detect
illegal changes to the mappings.

2.2. Side-channel threats in CVMs

Side-channel attacks that undermine the confidentiality
of trusted executions have long plagued Intel SGX, and
many such threats continue in CVMs.

NPF Controlled-channel attacks. Adversaries who
control the untrusted hypervisor can leverage its control
over the Nested Page Table (NPT) to strategically trigger
NPF on CVM pages by marking a page non-present. When
the victim CVM accesses such pages, the CPU generates
a #NPF, with the corresponding faulting address recorded
in the VM Control Block (VMCB). In the current SEV-
SNP [16], the processor notifies the hypervisor of (1)
the faulting Guest Physical Frame Number (GPFN) (e.g.,
0xff...ab000) through VMCB.EXITINFO2 and (2) the cause
of the fault, along with other information [16] through the
VMCB.EXITCODE upon the NPF occurrence. These so-called
NPF controlled-channel attacks are adaptations of the page
fault-based attacks against Intel SGX [8], [9]. Through the
attack, the adversary can trace instruction fetches and data
accesses at page granularity. In many previous SEV(-SNP)
attacks, NPF attacks have been employed as a CVM memory
profiling primitive for pinpointing attack targets (§8.1).

Fine-grained side-channels. Fine-grained side-channel
attacks represent attack vectors that leak memory access
patterns at a resolution finer than the page size. These
attacks typically exploit microarchitectural leakages (e.g.,
cache [4], [5], [9] and TLB [41]) or architectural leakages
such the encrypted memory access patterns [42], and ci-
phertext updates [18], [21]. Fine-grained side-channel at-
tack vectors have been extensively studied in the context
of Intel SGX [4], [5], [6], [7], [9], [10], [11], [12], and
certain attacks remain feasible against SEV-SNP CVMs. For
instance, recent research highlights the exploitation of L2
cache Prime+Probe and ciphertext side-channel attacks to
extract sensitive information from SEV CVMs [18], [21],
[24]. Ciphertext side-channel attacks [18], [21], [43] are
specific to AMD SEV(-SNP). They exploit the weak AES-
XEX cipher used for CVM memory encryption, which con-
sistently produces the same ciphertext for identical plaintext
written to the same physical address. In combination with
other primitives, a previous work [21] demonstrated a case
of full RSA key leak.

Untrustworthy interrupts and temporal resolution.
A SEV-SNP CVM currently has no option but to rely solely
on the untrusted hypervisor to deliver virtualized interrupts,
which may be delayed or completely skipped. Also, the
hypervisor may leverage the precise hardware interrupt timer
(e.g., APIC) to seize the victim’s CVM execution for itself
at any moment and at an arbitrary frequency. This untrust-
worthy interrupt delivery relation has been exploited as a

primitive to boost the temporal resolution of the fine-grained
side channels. Since the fine-grained side channels must
target very specific addresses and are often noisy due to the
ongoing CVM computations, single-stepping technique [6],
[24], [44] was often used to acquire temporal resolution of
a single instruction.

2.3. Previous mitigation approaches

While side-channel mitigations are not explored in the
context of CVM, several works have strived to protect Intel
SGX workloads from side-channel attacks.

Detection of side-channel attacks. Many works pro-
pose the detection of side-channel attacks through their
observable side-effects, such as significantly long delays in
program execution [32] or exceedingly high rates of enclave
exits [30], [31]. T-SGX [31] and SGX-LAPD [33] propose
terminating enclave execution if a configured number of
enclave exits is detected. T-SGX retrofits the Intel-specific
TSX feature to detect page faults during sensitive com-
putation. SGX-LAPD proactively accesses memory pages
before use and checks for enclave exits. Unfortunately,
these approaches overly restrict the OS page management
capabilities by preventing traditional demand paging.

Instead of forbidding all enclave exits, Varys [30] ad-
vocated periodically sampling the enclave’s exit rate and
terminating based on a set threshold.

Obfuscated execution engines. A line of work sought
after an ideal oblivious execution model in which ORAM
manages all code and data, and their execution and ac-
cesses are always performed through cache line-size scratch-
pads [26], [27]. Notably, Obfuscuro [26] provides cache-
line-level obfuscated execution through ORAM. Obelix [27]
extends upon the ideas of Obfuscuro to also grant protec-
tion against ciphertext attacks and resistance against mi-
croarchitectural instruction profiling attacks. However, such
approaches accompany multiple magnitudes lower runtime
overhead (up to 100,000× in ECDHE algorithm [27]) for
maximized resilience against side-channel attacks. Besides
performance overheads, the approaches require recompila-
tion of protected programs.

Klotski [29] argues for a more practical attacker mod-
eling and presents a practical page-level obfuscation engine
that balances security and performance by leveraging larger
scratchpad sizes and periodic rerandomization.

2.4. Threat model

INCOGNITOS adopts the conventional CVM threat
model, where the hypervisor is untrusted and may com-
mit to powerful side-channel attacks that undermine the
confidentiality of the CVM. The Trusted Computing Base
(TCB) encompasses the CPU hardware, the entire CVM,
and INCOGNITOS components. We assume the attacker has
knowledge of the CVM application and can send requests
to it, enabling runtime page access profiling and secret
extraction attacks through side channels. INCOGNITOS aims

4194

to thwart these attacks through obfuscation while maintain-
ing reasonable performance. We do not consider transient
execution attacks, e.g., Spectre [45] and Meltdown [46].
Their variants for Intel SGX enclaves have been patched
in SGX’s latest iteration [11], [12]; their effectiveness on
CVMs has not been extensively studied.

3. INCOGNITOS Overview

INCOGNITOS (Figure 1) is a unikernel design that tar-
gets AMD SEV-SNP for practical and transparent system-
level defense against CVM side-channel attacks. It proposes
a novel rate-adaptive obfuscation scheme that allows re-
laxing the rerandomization rate during normal execution,
as INCOGNITOS can sense the symptoms of attacks and
reactively increase the rate.

3.1. Kernel subsystems

As shown in Figure 1, INCOGNITOS retrofits the fol-
lowing kernel subsystems to enforce its rate-adaptive obfus-
cation scheme.

Scheduling subsystem. INCOGNITOS’s scheduling sub-
system (§4) constructs a sampling system that can accurately
determine the current VMExit rate. Using the measured
frequency of VMExit, the subsystem establishes a high-
level rerandomization policy to regulate the system’s obfus-
cation. To this end, INCOGNITOS’s scheduler implements
a trustworthy self-invocation mechanism independent of the
untrustworthy timer interrupts. Our design decision was to
implement so-called synchronous ticks inserted throughout
the user program and kernel to invoke the scheduler.

Paging subsystem. The paging subsystem (§5) takes
advantage of the direct access to the hardware MMU now
available to CVMs to implement a page rerandomization
scheme. It integrates an ORAM scheme into the OS page
tables to perform secure page-ins and page-outs. It performs
on-demand rerandomization at a frequency regulated by the
scheduler. INCOGNITOS paging allows the CVM to enjoy
full freedom using the Guest Virtual Address (gVA) space, as
INCOGNITOS’s rerandomization is achieved transparently in
the OS-level.

3.2. System requirements

INCOGNITOS’s scheduling and paging subsystem must
achieve functional design requirements (R2-R4) while re-
specting the userspace by maintaining transparency (R1).

R1: Transparent Obfuscation. As an operating system,
INCOGNITOS’s obfuscated execution must be transparent to
the user programs that it hosts. It must not require porting or
even recompilation of the user programs. This requirement
has an impact on many design decisions made in INCOGNI-
TOS. For instance, while INCOGNITOS’s synchronous ticks
and VMExit sampling system resemble methods used in a
previous work [30], it leverages static binary instrumentation
to support unmodified binaries.

R2: Self-sovereign scheduling. INCOGNITOS must im-
plement a self-sovereign way of scheduling critical tasks
independent of the timer interrupts the hypervisor delivers
due to untrustworthy virtualized interrupts (§2.2). At each
scheduling tick, INCOGNITOS can carry out self-defensive
operations such as measuring the current VMExit rate and
rerandomizing CVM memory as necessary.

R3: Robust VMExit rate sampling and policy.
INCOGNITOS’s scheduling must be equipped with a robust
VMExit rate sampling system. Accurately and continuously
measuring the VMExit rate is not a trivial task. For instance,
what is the system’s necessary sampling rate for accurately
sampling the VMExit frequency range of the attacks? This
robust sampling allows us to build a high-level policy that
moderates the rerandomization rate.

R4: Full-system memory rerandomization. INCOGNI-
TOS’s rerandomization of CVM memory must be transpar-
ent to userspace and, at the same time, must also include the
kernel components. Notably, we found that rerandomizing
the locations of the page tables themselves is indispensable
to avoid leaking INCOGNITOS’s memory layout.

3.3. Embracing unikernel design

INCOGNITOS makes a case for unikernels as a basis for
efficient transparent (R1) and full-system (R4) obfuscation
of CVMs. The unikernel-based approach brings the follow-
ing unique design leverages.

Minimized memory footprint and complexity. The
unikernel adoption takes full advantage of its minimal
memory footprint to achieve full-system page access ob-
fuscation with lower overheads. Even compared to Linux
MicroVMs [47] running NGINX, a Unikraft-based NGINX
deployment consumes 93% less memory during runtime
(2MB vs. 29MB) [48]. Moreover, the significantly lower
code complexity of the unikernels compared to the Linux
kernel facilitates INCOGNITOS’s rerandomization scheme
that directly modifies the kernel paging.

Single address space and privilege level. INCOGNITOS
takes full advantage of direct hardware access in unikernel’s
single privilege level execution to implement efficient OS-
level obfuscation techniques. For instance, INCOGNITOS’s
scheduler design that must be invoked at a high frequency
is feasible due to the lack of user-kernel switching costs.
Similarly, the INCOGNITOS’s performance overhead of an
unusually high rate of Page Faults (PFs) from constant
rerandomization is significantly alleviated. The unified ad-
dress space for user and kernel pages makes it harder
for adversaries to isolate specific program behaviors. For
example, prior attacks [22], [23], [49] typically filter out
kernel page accesses to reduce noise when profiling target
user programs.

Portability and application support. INCOGNITOS,
being a fork of Unikraft, inherits the achieved and ongoing
efforts towards practicality and compatibility. As INCOGNI-
TOS’s defense is designed to be transparent to the hosted
program, it can support various programs already ported to

4195

Instrumentation for
Synchronous Ticks

Rate-adaptive
Rerandomization Policy

Sampled
Measurements

Scheduling & Rate-adaptive Policy (§4) ORAM-backed Paging (§5)

Sliding window Rerand. rate func

Exit rateRe
ra

nd
. r

at
eRegulate

On-Demand
Rerandomization

Page Access Obfuscating
Memory Management

Application &
Libraries

Operating
System

gVA

gPA

Attacker Observability

ORAM-Managed
Page Pool

Active
Regions

IncognitOS Memory Layout

Instrument
then run

mov rdx, [PTR]

jmp LABEL_37

xor rbx, rbx

jmp_deliver_tick

…

…

…

VMExits

incog_sched()

probe_vmexit();
 update_cnt();
exec_orig_inst();

Instruct
Rerandomizationmov rcx, rdi

mov rdx, [PTR]
…

jmp LABEL_37

…
mov rdx, rcx
xor rbx, rbx
…

…

mov rax, rcx
mov rbx, rsi
…

jmp deliver_tick

jmp deliver_tickjmp deliver_tick
jmp_deliver_tick

Figure 1: Overview of INCOGNITOS

Unikraft, such as NGINX, Redis, Node.js, and Flask and
unmodified binaries through its ELF loader [50].

3.4. Adaptive defense strategy

Before explaining the rationale behind our strategy, we
discuss the empirical analysis that shows the VMExit rates
of benign workloads and reproduced side-channel attacks on
a SEV-SNP CVM.

Empirical analysis: VMExit rates during attacks.
We empirically analyzed the VMExit rates in workloads
and attacks to support our motivation for the work and
acquire concrete data for establishing system design require-
ments. The results are shown in Table 1. To this end, we
implemented an in-hypervisor measurement framework that
places probes inside the KVM’s VMExit handler (svm_-
vcpu_enter_exit) and also counts executed CVM instruc-
tions using the AMD’s hardware performance monitoring
tool [51]. The framework collects the runtime traces of (1)
the number of VMExits and (2) the instruction distance
between each VMExit. Hence, the VMExit rate is calculated
in the unit of instructions per VMExit. All experiments
were conducted with INCOGNITOS instance inside SEV-
SNP without its obfuscation capabilities. We implemented
the attacks by either developing them from scratch based
on previous methodologies (e.g., the SGX-based controlled-
channel attack [8], CVM profiling [22]) or by porting
the open-sourced version to our environment, e.g., single-
stepping frameworks for AMD SEV [24], [44].

L1, L2, and L3 represent the VMExit frequencies of
benign execution, while L4, L5, and L6 represent hostile
scenarios in which side-channel attacks are employed. We
obtained the geometric means (GeoMean), the geomet-
ric standard deviation (GSD), and the maximum value of
VMExit frequency sampled in these scenarios.

Motivation: Large gaps in averages. The results in-
dicate that the side-channel attacks indeed accompany ab-
normally high VMExit frequency (fVMExit), distinguishable
from the averages of the normal CVM executions. Even
with the attack L4 that is known to suppress the num-
ber of NPFs by only monitoring data page accesses, the
frequency is about 50.68× higher than the average seen
in intensive NGINX execution: L2 (NGINX): 0.0016 vs.
0.0811. In other words, even the low-exit NPF attack (L4)
induces a VMExit for every 12.33 CVM instruction exe-

GeoMean GSD Max

L1 nbench benchmark suite 0.0009 2.37 0.06
L2 NGINX (1000 requests, 8 concur. conn., 4KB file) 0.0016 10.77 0.13
L3 Redis (1000 requests, 50 concur. conn., 4KB payload) 0.0019 7.54 0.13

L4 Low-exit NPF attack [8] 0.0811 2.84 0.5
L5 NPF-based profiling [19], [22], [24] 0.1658 2.80 0.5
L6 Single-stepping [24] 0.8973 1.58 1.0

ID Workloads / Attacks
VMExit Frequency
(exits/instruction)

TABLE 1: SEV-SNP CVM VMExit frequency (exits/isns) in
benign workloads and attacks. L4 were performed on Lib-
JPEG (§6.3), L5 and L6 were performed on Redis workload.

cution (TVMExit = 1/fVMExit). This means that the VMExit
frequencies of benign workloads and adversary-bound side-
channel attacks are generally distinguishable in terms of
average VMExit frequencies.

Motivation: Spikes in benign workloads. However,
we also observe the high-frequency spike appearances in
benign workloads as shown in L2, L3’s Maximum fVMExit
intervals. The highest VMExit frequency interval observed
in NGINX (L2) and Redis (L3) was measured to be 0.13.
The number surpasses the average VMExit frequency of the
low-exit NPF attack (L4, 0.0811) and is close to conven-
tional NPF profiling attacks (L5, 0.1658). Our manual in-
depth analysis identified that the sources of the spikes are
consecutive NPFs from demand paging during the process
initialization and from I/O requests from virtio. We expect
such occurrences to be common in benign workloads that
require large working sets or network connections.

Defense strategy. The above analysis provides implica-
tions that serve as motivations for INCOGNITOS’s adaptive
defense strategy. First, the VMExit frequency ranges of the
benign workloads and side-channel attacks show clear gaps,
further confirming the high VMExit frequency as indicative
of ongoing attacks. Given the clear gaps in the average
VMExit frequencies, we argue that a fixed rerandomiza-
tion rate throughout execution [29] is inefficient. Second,
our testing proves our concern that benign workloads with
exceptionally high VMExit rate spikes can render fixed
threshold schemes used in SGX by previous work infeasible
for SEV-SNP [30], [31]. This calls for a robust mechanism
that tolerates potential spikes in frequencies. Lastly, the
numbers from the analysis serve as a concrete requirement
in designing INCOGNITOS’s scheduler’s VMExit sampling.

4196

INCOGNITOS proposes a rate-adaptive defense strategy
that overcomes the inefficiency of a fixed-rate rerandomiza-
tion and robustness problems of a fixed threshold. To imple-
ment the strategy, INCOGNITOS adjusts the rerandomization
rate proportionally to the detected VMExit frequency, rep-
resenting the adversary’s temporal resolution.

4. Scheduling for Rate-Adaptive Policy

In this section, we explain the design of INCOGNITOS’s
scheduler. INCOGNITOS implements a static binary instru-
mentation tool (R1) to plant synchronous ticks in each
basic block program executables and achieve self-sovereign
scheduling (R2). Each synchronous scheduler tick must
detect the occurrence of the VMExit and count executed
instructions to calculate the VMExit frequency (§4.1). We
found that constructing a robust VMExit frequency sampling
system (R3) is a daunting challenge. We make careful design
decisions to make the system as robust as possible (§4.2).
With the synchronous ticks implemented (§4.3), INCOGNI-
TOS finally constructs a high-level policy atop (§4.4).

4.1. Data acquisition at ticks

Each synchronous tick invocation checks and reports
to the scheduler 1) the VMExit occurrence since the last
tick and 2) the number of executed instructions since the
previous tick. These two key data for VMExit frequency
measurement are collected through the following devices:

VMSA mapping for VMExit detection. INCOGNITOS
leverages the unforgeable VMExit occurrence information
recorded in the VMSA (§2.1) to establish a primitive for
in-CVM sampling of VMExits. While the initial VMSA
of the boot vCPU (initialized by the hypervisor) is not
accessible by the CVM, we found that the secondary vCPU,
i.e., application processors (APs), can access their VMSA
since the VMSA is initialized by the CVM itself [16]. Thus,
during CVM boot, INCOGNITOS ensures that the VMSA
page is securely mapped into the guest address space. RMP
checks ensure the integrity of the VMSA by preventing
tampering: the host cannot forge Host Physical Address
(hPA) to Guest Physical Address (gPA) mappings or perform
unauthorized write accesses to CVM’s private memory.

Instructions executed as passage of time. Each tick
delivers the instructions count of its parent basic block to
the scheduler, thereby allowing the scheduler to accumulate
the total number of instructions executed in between ticks.
The instruction count of each basic block is precalculated
during static instrumentation and stored in the executable
(explained in detail in §4.3). INCOGNITOS utilizes the
executed instructions count to measure the passage of time
for security and robustness reasons (R2, R3). While SEV-
SNP provides SecureTSC [16] that allows secure acquisition
of the current time, the usage of absolute time to measure the
VMExit rate would be insecure. For instance, the hypervisor
can intentionally delay the scheduling of a CVM to provide
a misleading VMExit count per second.

4.2. Tick placement strategy

INCOGNITOS’s tick placement adopts two key rules to
maximize the robustness of VMexit frequency sampling
(R3): the Nyquist sampling frequency and per basic block
ticks for maximum loop coverage.

Nyquist Sampling frequency. We define the required
sampling rate according to the Nyquist Theorem [52], based
on the observation that our VMExit frequency measurement
is essentially a signal sampling problem where the value of
vmsa.exit_code over time forms a square wave signal. Fol-
lowing the Nyquist sampling theorem, the required sampling
rate for accurately measuring a signal whose frequency is
fsampled must be at least 2× fsampled, and therefore:

fReq
Tick ≥ fTarget

VMExit × 2.

fTarget
VMExit must be a value between the frequency levels

of benign workloads and attacks, such that INCOGNITOS
can apply an adaptive rerandomization rate with minimized
false-positive cases reliably.

From our empirical analysis (Table 1), we know the
average fVMExit of the highest benign workload and lowest
attack fVMExit to be 0.00164 (L2) and 0.081103 (L4). Hence,
INCOGNITOS sets its target frequency to be two times the
frequency of benign execution, fTarget

VMExit = 2 × 0.00164 =

0.00328. Thus, the required, or Nyquist, fReq
Tick, must be

at least twice that amount, 0.00656, or once every 152
instruction execution.

Loop coverage. Apart from achieving the Nyquist fre-
quency, we found incomplete loop coverage with ticks to be
the most prominent threat to robustness during implemen-
tation. Given that accurately identifying loops in binary is
a known hard problem [53], we resort to a per-basic-block
tick placement scheme as mentioned, which also contributes
to achieving the required sampling frequency.

4.3. Tick and trampoline implementation

INCOGNITOS’s binary instrumentation tool is based on
the e9patch binary rewriting framework [53]. The tool in-
struments an unmodified dynamically-linked Unikraft binary
to insert synchronous ticks and trampolines for INCOGNI-
TOS scheduler invocation.

Synchronous ticks. INCOGNITOS synchronous ticks are
placed in each basic block of the user program to invoke its
matching trampolines, and eventually, the scheduler func-
tion. An INCOGNITOS synchronous tick is a 5-byte relative
jump instruction (jmp rel32) to a unique trampoline that
is paired with the tick. The instrumentation tool iterates
over each basic block, selecting one instruction within a
basic block to be replaced with an INCOGNITOS tick.
Due to the non-intrusive nature of jumps and the generally
longer byte sequences of x86 instructions, finding a 5-byte
sequence in a basic block is not challenging. However, basic
blocks can exist without such suitable instructions. In such
cases, the tool opts for the fallback strategy that revolves
around instructions punning [53], [54]. This design choice

4197

of employing jump-based ticks takes full advantage of the
unikernel design. Due to the lack of the user-kernel barrier
in INCOGNITOS, the trampoline of the jumps is only a few
cycles away.

Trampolines. For each tick inserted, the tool also gen-
erates a unique trampoline (e.g., trampoline_UUID for
tick_UUID.) Each generated trampoline performs three op-
erations: 1) executes the overwritten instructions that had
been relocated to the trampoline body during instrumenta-
tion, 2) loads the hardcoded instruction count of the source
basic block into the argument register then finally 3) calls
INCOGNITOS’s scheduler function (incog_sched()).

Scheduler function. On receiving the control, the sched-
uler first inspects the vmsa.exit_code field of the VMSA
to sample the occurrence of a VMExit since the last tick.
incog_sched() always sets the field to a special value that
it can recognize (i.e., 0xFFF); the change of the value since
the last tick indicates a VMExit occurrence. The instruction
counts forwarded by the trampoline and the detection of
VMExits are consumed by the scheduler’s rate-adaptive
policy (§4.4).

Kernel tick placement. Unlike user program executa-
bles, placing ticks in kernel code is performed through
compiler instrumentation and manual effort. The unikernel’s
small code base allows us to identify and avoid problematic
cases manually. For instance, ticks should not be inserted
into the trampolines and scheduler functions, and a handful
of kernel functions that require atomicity must be excluded.

4.4. Rate-adaptive rerandomization policy

Based on the tick delivery and VMExit measurement
explained thus far, INCOGNITOS constructs a higher-level
policy (R3) that schedules when the paging subsystem must
perform rerandomization.

Achieved sampling capability. Using the described
synchronous tick instrumentation and kernel tick placement
strategies, we found that the evaluation targets provide a
reliable measurement of fVMExit. In particular, we use the
previously described measurement framework to obtain the
distance between ticks and calculate the tick rate for the
evaluation targets (nbench, NGINX, and Redis). The aver-
age (geometric mean) tick rate for the nbench suite, NGINX,
and Redis was measured to be 0.023, 0.028, and 0.037,
respectively. Based on the previously defined requirement,
at its worst tick rate (the nbench suite), the INCOGNITOS
is capable of achieving 3.51 times fReq

Tick.
Sliding window measurement scheme. We use a slid-

ing window [55], [56] to reliably calculate the current trend
in VMExit frequency (i.e., fVMExit), based on samples of
detected VMExits and instruction counts. Given a monoton-
ically increasing tick number t, we define a sliding window
as a collection of W latest samples of (VMExitt, #InstExect)
delivered by the scheduler. INCOGNITOS computes f t

VMExit
at the current tick t as follows:

f t
VMExit =

t∑
i=t−W

VMExiti

t∑
i=t−W

#InstExeci
, where VMExiti ∈ {0, 1}

Description
W Number of samples in single sliding window

fAlarm
VMExit Frequency threshold to trigger alarmed rerandomization state

fNormal
ReRand Frequency of rerandomization during unalarmed state

FAlarm
Function that determines rerandomization frequency fAlarm

ReRand
with current measured fVMExit as input during alarmed state

G
Grace period constant where termination happens after G
consecutive sliding windows measurements above fAlarm

VMExit

TABLE 2: Configurable parameters to policy

This enables efficient computation of VMExit frequency
using two size-W ring buffers that track VMExit and Ins-
tExec samples. Running sums are maintained by adding new
values and subtracting expired ones, avoiding iteration over
tick samples.

Policy formulation. A high-level rerandomization fre-
quency regulation policy can now be constructed based
on the robust VMExit frequency measurements from the
current sliding window. Table 2 explains the configurable
parameters of the policy. Below is the policy at a glance:

f t
ReRand =

fNormal
ReRand if f t

VMExit < fAlarm
VMExit

FAlarm(f
t
VMExit) otherwise

where FAlarm (f t
VMExit) = f t

VMExit
2 × α

INCOGNITOS maintains a relaxed rerandomization rate
of fNormal

ReRand when the measured VMExit frequency is below
the threshold frequency fAlarm

VMExit. However, when the thresh-
old exceeds the threshold, the policy enters an alarmed
rerandomization state. The rerandomization frequency dur-
ing the alarmed state (fAlarm

ReRand) is regulated through the func-
tion FAlarm. Currently, we use a simple quadratic function
for FAlarm that allows the fAlarm

ReRand upward curve to maximize
when attack frequencies are measured. Also, INCOGNITOS
allows an optional termination policy to abruptly terminate
the CVM after a grace period (G). If VMExit frequencies
higher than the threshold fAlarm

VMExit are observed for G con-
secutive windows, CVM termination proceeds. A value of
0 for G signifies that the termination policy is disabled.

Rationale for default parameters. As to the concrete
parameters we use for evaluation, we set the fAlarm

VMExit to
be 0.003 as mentioned (Nyquist frequency of 2× benign
workload frequency). This threshold renders the low-exit
NPF attack (L4) infeasible due to constant randomization,
and only occasional benign high-VMExit execution suffers
as a side effect. Also, we used the values 1/10K, 1/100K,
1/500K, 1/1M, 1/2M for fNormal

ReRand. The rationale behind the
general range is that INCOGNITOS’s rate can be substan-
tially lower than the previous work’s fixed rerandomization
rates (e.g., every 1K memory accesses [29]). Hence, we
assume one memory access per 10 instructions (1/10K) and
relax the number in multiple steps. Additionally, we used
W = 100 and G = 1000, which we empirically found
optimal for promptly detecting VMExit rate changes during
workloads and attacks.

4198

GVA

GPA ORAM-Managed
Page Pool

Page-in: AR[Rand()]
Attacker Observability

ARCode ARData

Full Eviction
AR Slot

Figure 2: INCOGNITOS’s system memory layout and page
management

5. OS-level Page Access Obfuscation

INCOGNITOS achieves OS-level page access obfus-
cation that operates independently from the gVA space.
INCOGNITOS’s paging subsystem maintains all CVM mem-
ory pages, including kernel and userspace pages (R4) as
well as the Guest Page Tables (GPTs), in an ORAM-backed
page pool and only allows memory accesses through a
narrow and constantly rerandomized gPA active regions. It
carries out page-ins and page-outs in a page-access oblivious
manner. Also, it responds to the scheduler’s rerandomization
commands with eviction-based memory rerandomization to
reshape the gPA space.

5.1. System memory layout

The paging subsystem manages the following compo-
nents to maintain the INCOGNITOS system memory layout
as shown in Figure 2.

ORAM-managed page pool. The page pool implements
the Path ORAM scheme [57], where each node is a page.
The path ORAM algorithm maintains a binary ORAM tree
with height l containing N = 2l−1 buckets, each containing
Z blocks. It also maintains an ORAM stash of S in size to
house fetched ORAM blocks temporarily. An ORAM node
may be a dummy page containing no actual data or a real
page that stores the content of a memory page.

The Path ORAM algorithm performs data transfers be-
tween the ORAM tree and the ORAM stash at the granu-
larity of paths on the ORAM tree [57]. It keeps a Position
Map (PosMap) structure that maps each ORAM block to
a randomized path indexed by the leaf nodes (leaf ID).
In INCOGNITOS, both the ORAM tree and stash are im-
plemented as an array of pages in contiguous physical
pages reserved during CVM boot. The ORAM PosMap is
integrated with the OS page table, as described in §5.2.

Active gPA regions. INCOGNITOS manages gVA ad-
dress space and also the OS page table into the constrained
and constantly randomized active gPA regions (ARCode and
ARData in Figure 2). INCOGNITOS manages separated
regions for CVM code, data (including stack and heap),
and page tables (ARcode, ARdata, and ARpgt). This design
decision is based on the fact that SEV SNP’s hypervisor-side
NPF handler notifies the untrusted hypervisor of the type
of PF: code fetch, data fetch, and guest page table faults.

Hence, mixing the three types of pages in a smaller active
gPA region does not increase security.

Active region size. Each active region can shelter a
configurable number of slots (S) of 4KB pages. A slot may
be occupied, containing a page with an active mapping, or
empty. Unlike previous work that prefers an active region
(or scratchpad) that spans a single rerandomization unit or a
small number of units [27], [29], INCOGNITOS chooses to
acquire entropy through larger active regions (8,192 slots of
4KB per region), due to the known ciphertext weakness [21]
of SEV-SNP. We further discuss the issue in §7.1.

Isolated pages for inevitable disclosures. INCOGNI-
TOS isolates certain kernel components whose locations are
inherently exposed to the hypervisor into non-randomized
address spaces to prevent information leakage. For instance,
the SEV-SNP architecture permits the hypervisor to inject
faults/interrupts, allowing it to monitor Interrupt Service
Routines (ISRs) and their subsequent execution. When left
on their original pages, these components may expose other
code and data residing on the same page. Such pages include
pages containing explicit calls to the hypervisor (vmgexit),
memory mappings for I/O, and ISR pages (including the
OS PF handler). We further discuss the security of the PF
handler in §7.1.

5.2. Page management and randomization

INCOGNITOS maintains an ORAM-integrated page ta-
ble that controls the mappings from gVA (guest virtual
address) to gPA (guest physical address) to regulate the
CVM’s memory access within the constantly randomized
active regions. As a result, the gVA remains unchanged
after its initial setup. Memory rerandomization and page
management are performed using the page-in and page-out
procedures, which obliviously transfer pages between the
ORAM-managed page pool and the active regions.

Integration of ORAM into OS page tables. INCOGNI-
TOS’s approach for coherently integrating ORAM into OS
page tables is to essentially transform the Page Table Entries
themselves to function as the PosMap of the Path ORAM
algorithms. This eliminates the need to maintain a separate
PosMap data structure. PTEs in an INCOGNITOS-managed
page table may reside in one of three states: (1) active,
where the encoded Page Frame Number (PFN) points to
a region within the active regions or (2) paged-out, the
backing page has been evicted to the ORAM page store,
or (3) unallocated, which indicates that a new physical
page frame must be allocated to support OS demand pag-
ing. Specifically, for paged-out pages, INCOGNITOS reuses
PTEs of evicted pages to store their leaf IDs.

Page fault handling. INCOGNITOS’s PF handler is
invoked when the MMU encounters any PTE with its present
bit cleared (paged-out and unallocated). It first performs
a software page table walk to identify the non-present PTE.
For unallocated PTEs, the handler selects a random slot
within the active region corresponding to the type of fault for
its allocation (ARData for read and write, and ARCode for
execute, and ARgpt for page table faults). If the chosen slot

4199

is occupied, the existing page is evicted through the page-out
process. Page-ins occur upon PFs on paged-out PTEs, and
the corresponding page is fetched from the ORAM-managed
page pool into the active region.

Page-In. The page-in process begins with a Path ORAM
path fetch that retrieves pages based on the ORAM leaf
ID in the PTE and moves them to the ORAM stash [57].
A slot within the active region according to the type of
fault is then randomly chosen as the gPA for the paged-
in page, similar to the handling of unallocated PTEs.
The page corresponding to PTE is then copied from the
stash into the chosen slot. This page is identified using
the faulting gVA (e.g., 0xff..cc000) and the page level
where the PTE resides (e.g., PD or PT), which is stored
as the page’s ORAM metadata. Since the ORAM stash
resides in untrusted memory, to obscure which page is being
fetched from the stash, INCOGNITOS utilizes an oblivious
memory access wrapper adapted from previous work [27].
The wrapper ensures that all physical pages in the stash are
touched, regardless of the target page.

Page-Out. Page-outs occur on two occasions: (1) to
serve the rerandomization scheme described next and (2)
when the random slot for page allocation is occupied. On
a page-out, the target page is first written to the ORAM
stash, where it will eventually return to the ORAM tree
through ORAM shuffling. ORAM algorithms utilize both
real and dummy nodes. Since the stash is stored in untrusted
memory, the location of dummy slots must be protected to
maintain ORAM’s security guarantees [29]. To address this,
INCOGNITOS’s stash implementation adopts a modified
WriteStash operation from previous work [29]. It keeps
track of the last stash slot written to, incrementing this index
with each write to the stash. When new pages (dummy
or real pages) are to be added to the stash, an unused
stash slot is selected starting from this index, resulting in
an always-increasing write access pattern. If no slots are
available, the stash is reshuffled by compacting real blocks
to the beginning using the oblivious memory wrapper, after
which the empty slot index is reset. Finally, the page’s
corresponding PTE is then encoded to be paged-out.

Rerandomization through full eviction. INCOGNI-
TOS’s paging subsystem performs eviction-based rerandom-
ization upon receiving a request from the scheduler. When
rerandomization is to be performed, the paging subsystem
evicts all currently occupied slots within the active regions
back to the ORAM-managed page pool. Thus, memory ac-
cesses that follow the rerandomization would automatically
construct randomized memory layouts through the oblivious
and random page-in process.

Inclusion of page tables in rerandomization. To main-
tain the obfuscation of the entire system (R4), INCOGNI-
TOS incorporates the GPT into the rerandomization scheme.
Although this design choice adds non-trivial complexities,
we must address the Nested Page Fault on GPT (NPF-
on-GPT) information leak we have identified. Specifically,
while an untrusted hypervisor has no direct source to leak
gVA accesses, exposed GPFNs of the GPTs themselves can
serve as an alternative identifier for the 4KB pages they

map. For instance, if there is a NPF-on-GPT on one of two
PTEs located at PFN 0xaa000 and 0xab000, it means that
a memory access to a specific set of 512 4KB pages is
imminent. As a result, the adversary can leak the gVA access
pattern of the CVM execution with up to 2MB (4KB×512)
granularity by exploiting PTEs location leaks.

Since access to higher-level GPTs (PML4, PDPT) would
only leak extremely coarse-grained information, we focus
on the last two levels (PD and PT). INCOGNITOS places
each layer of the GPT in a dedicated active region (e.g.,
ARPT

gpt ,ARPD
gpt), such that their rerandomization may be per-

formed independently. To respect the dependencies between
pages and their corresponding PTE, INCOGNITOS’s page
evictions are performed in the reversed order of the GPT
hierarchy. That is, page evictions are performed in the order
of ARCode, ARData first, then ARPT

gpt and finally ARPD
gpt .

6. Evaluation

In this section, we evaluate INCOGNITOS in terms of
its security and performance feasibility through six exper-
iments: 1. robustness of VMExit frequency measurement
(§6.1), 2. access pattern profiling resilience in NGINX
(§6.2), 3. LibJPEG image extraction attack mitigation (§6.3),
4. nbench microbenchmark (§6.4), and real-world applica-
tion performance benchmarks (§6.5) with 5. NGINX and 6.
Redis. We provide a qualitative security discussion in §7.1.

Implementation. INCOGNITOS is implemented as a
fork of the Unikraft unikernel version v0.15.0 [58]. The
kernel was modified to support whole-VM memory encryp-
tion and mapping integrity protection during boot, along
with Guest-Host Control Block (GHCB)-based communica-
tion with the hypervisor [16]. Additionally, the networking
stack was updated for compatibility with the SEV-aware
virtio driver. 3, 401 lines of code were added or modified
for SEV-SNP compatibility, not including INCOGNITOS’s
design elements. We implemented INCOGNITOS’s kernel
component in 9, 427 lines of code and its binary rewrite in
682 lines as a plugin to the e9patch binary instrumentation
framework [53].

Experiment environment. The evaluation is performed
on a server equipped with AMD EPYC 7513 CPU@2.0GHz
(AMD SEV-SNP capable) and 256GB of RAM, running
Ubuntu 22.04 with kernel version 6.9.0-rc. Also, the experi-
ments used SEV-supported QEMU (commit hash bf83c1b9)
and OVMF (commit hash 80318fcd) versions provided by
AMD. We have also taken measures to reduce variances
during the benchmarks. For all experiments, the QEMU
process and the benchmarking program (e.g., ab) are pinned
to dedicated cores (e.g., taskset -c 4) that are reserved at
boot (using isolcpus kernel parameter).

Parameter settings. All parameters to INCOGNITOS’s
policy are applied as described in §4.4. However, note
that we disabled the grace period mechanism by setting
G = 0 to fully illustrate the effects of rerandomizations
for the experiments in §6.1, §6.2, and §6.3. The following
table summarizes the parameters that were used, which also
includes the ORAM configurations:

4200

10−3

100

fActual
VMExit

Normal I/O Low-exit NPF Attack NPF Profling Single-Stepping
read epoll wait write

10−3

10−2fMeasured
VMExit fAlarmVMExit

0.0 0.5 1.0 1.5 2.0

Cumulative Executed Instruction Count (×106)

10−3

10−1

fReRand

fNormalReRand

Figure 3: VMExit frequencies measured by INCOGNITOS vs. ground truth (in-KVM), and the resulting adaptive random-
ization rates for Redis under various workloads and attacks.

INCOGNITOS Parameters ORAM Params.

AR Size W fAlarm
VMExit fNormal

ReRand G N S Z

8, 192
(32MB) 100 0.003 1

10K
∼ 1

2M
1000

32, 768
(128MB) 512 4

6.1. Robustness evaluation

We evaluated the robustness of INCOGNITOS adaptive
rerandomization scheme with INCOGNITOS-hosted Redis,
as shown in Figure 3. The graph allows us to evaluate
how close INCOGNITOS’s VMExit frequency measurements
(fMeasured

VMExit) and rerandomization rate (fReRand) approximate
the ground truth VMExit frequency measurements (fActual

VMExit).
Measurement method. The data points of the in-

hypervisor framework mentioned in §3.4 (ground truth) and
INCOGNITOS are synchronized at each of INCOGNITOS’s
ticks. At each invocation, the scheduler reports its VMExit
frequency and rerandomization rate to the framework via a
custom hypercall excluded from the VMExit counts.

Experiment setup. We applied 1) normal I/O workload,
2) low NPF controlled-channel attack, 3) conventional NPF
controlled-channel attacks, and 4) single-stepping (L3, L4,
L5, and L6 from Table 1) to the CVM in a sequence,
whose intervals are labeled with Normal I/O, Low-exit NPF
Attack, NPF Profiling, and Single-Stepping in the graph,
respectively. The initiation of the attacks was synchronized
with Redis’s accept system call that signifies the beginning
of Redis request handling. The low NPF controlled-channel
attack targets specific pages that give away information and,
therefore, are program-specific. Thus, we first profiled the
working set (i.e., frequently accessed pages), then randomly
chose 10% of the pages to be monitored to emulate the
effect of the attack.

Result discussion. Overall, the result in the graph con-
firms the robustness of INCOGNITOS’s VMExit frequency
measurement. We found the following observations to be
noteworthy:

First, the results show that INCOGNITOS suppresses
the rerandomization frequency during benign workloads
while promptly reacting to the attacks to fight them with

a very high rerandomization frequency. When the ongoing
attack is absent, fNormal

ReRand is mostly maintained with minor
spikes. However, INCOGNITOS showed drastically higher
frequency (fAlarm

ReRand) applied to low exit NPF, conventional
NPF, and single-stepping. More specifically, the average
randomization frequencies were adjusted to be about 0.003,
0.2007, and 0.245 on average, respectively (i.e., once reran-
domization every 333, 4, and 5 instructions). 93.8% of ticks
triggered alarmed frequencies of rerandomization, even with
the low-exit NPF attack. This number increases to 100% for
NPF profiling and single-stepping attacks.

Second, INCOGNITOS reliably handled the VMExit fre-
quency spikes during the benign workloads. If an instan-
taneous decision was to be made with a fixed threshold,
these could have been mistaken for an attack. We manually
confirmed that these spikes occurred during I/O activities.
We marked the locations of spikes with identified sources
on the timeline by labeling invoked system calls, such as
read and write, on the timeline. INCOGNITOS handled the
spikes with momentarily alarmed rerandomization frequency
enforcement, yet the execution continued.

6.2. Access pattern profiling resilience

The NGINX memory address profiling attack experi-
ment demonstrates INCOGNITOS’s resilience to code data
access profiling attacks (§8.1). Figure 4 presents the profil-
ing results of two versions of INCOGNITOS-hosted NGINX
web servers: one without randomization, whose observable
traces are shown with the label Without Rerand, and one
with INCOGNITOS’s rerandomization policy (With Rerand.

Experiment setup. We adapted the technique from
a previous work that performed a profiling attack on a
OpenSSH server [22] to a INCOGNITOS-hosted NGINX. The
attack traces the CVM’s page access patterns through the
NPF controlled channel and computes the CVM’s access
frequency for each unique gPA page based on the trace. Both
web servers are configured to use the active regions with
identical sizes (8,192 slots) for a more accurate comparison.

Result discussion. The results show that performing
NPF-based profiling is highly infeasible against INCOGNI-
TOS’s adaptive rerandomization. During the entire attack
duration, an average fAlarm

ReRand of 0.2 was observed, triggering

4201

102

105

C
o
d

e

H(X) = 12.965H(X) = 3.336

0 1024 2048 3072 4096 5120 6144 7168 8192
Active Region Slots

102

105

D
at

a

H(X) = 12.889H(X) = 1.887

A
cc

es
s

F
re

q
u

en
cy

(l
og

-s
ca

le
)

With Rerand Without Rerand

Figure 4: NPF controlled-channel profiling results of
INCOGNITOS-hosted NGINX code and data page access
frequency during single HTTPS request. H(X) values show
Shannon entropy values.

a rerandomization at almost every tick. Each rerandomiza-
tion would render the attack meaningless since each physical
page will take a random position (out of 8,192 slots) after
the rerandomization.

In the case of Without Rerand, the page access
patterns reveal distinct profiles during request handling
(max = 289, 995/237, 372, mean = 82.94/67.48, std. =
3471.95/3684.0 for ARcode/ARdata). This quintessential
access frequency pattern allows the adversary to narrow
down or pinpoint the sensitive pages. On the other hand,
the With Rerand histogram illustrates the effect of elevated
rerandomization rate, which shows the collected profile ap-
proximating a uniform distribution, where only slight vari-
ations are observed (mean = 24.14/7.78, std. = 5.61/3.24
for ARcode/ARdata).

To further validate the results, we computed the Shannon
entropy for each histogram that quantifies the unpredictabil-
ity of page accesses to each active region slot. High en-
tropies of H(X) = 12.965 for code and 12.889 for data
were observed for the constantly rerandomized NGINX,
which translates to roughly 213 = 8, 192 all possible page
locations, meaning that the page access patterns are indis-
tinguishable.

6.3. Thwarting JPEG image extraction attack

The LibJPEG image extraction attack [8] visually
demonstrates INCOGNITOS’s effectiveness. The results in
Figure 5 illustrate the impact of INCOGNITOS’s rate-
adaptive randomization policies on the extracted image
(With Adaptive rerand.) compared to the unprotected version
(Unprotected).

Experiment setup. We reenacted the attack that orig-
inally targeted LibJPEG secured in an SGX enclave in a
previous work [8] for the experiment. In the porting process,
we adapted the attack to utilize the CVM NPF controlled
channel as its attack primitive. The attack extracts the image
processed in the CVM through a statistical reconstruction
through the controlled channel. As an identical experiment
was in Klotski [29], we followed its setting that allows
a best-case scenario for the attacker: the attacker knows
the address range of the side-channel vulnerable function

(Inverse DCT function) and only needs to count the number
of page faults during the critical section to reconstruct the
processed image.

Result discussion. Without INCOGNITOS’s protection,
the attack can reconstruct the patterns of the compressed
image with minimal noise (the Unprotected image). On the
other hand, the constant page rerandomizations (about eight
times per extracted pixel) render most of the extracted fea-
tures unrecognizable (With Adaptive rerand. image). Also,
the distribution of extracted pixel values (shown as a his-
togram under the image) becomes smooth because of this.

6.4. nbench microbenchmark

We illustrate the performance characteristics of INCOG-
NITOS using the nbench [59] benchmark. The results are
shown in Table 3.

Experiment setup. We deployed different configura-
tions of INCOGNITOS-hosted nbench. The ReRand. Dis-
abled column shows the benchmark results with the syn-
chronous tick instrumentation but without rerandomization,
thereby illustrating the isolated overhead from the ticks.
We also illustrate the performance overhead of INCOG-
NITOS’s rerandomization in varied static frequency of
fStatic

ReRand =1/{10K, 100K, 500K, 1M, 2M}. While INCOG-
NITOS uses rate-adaptive rerandomization in practice, the
static frequencies allow us to understand the security and
performance tradeoffs when configuring the policy param-
eters (e.g., fNormal

ReRand). For each configuration, we ran the
benchmark for fixed 1, 000 iterations and took the average
for the statistics of each run.

Result discussion: isolated tick overhead. The results
show an average performance degradation of 3.87× for
the nbench suite. Since INCOGNITOS performs per basic
block synchronous tick placement, the total number of tick
triggered varies across different programs. The number of
synchronous ticks executed (#Tick) in each program in the
suit illustrates how the overheads generally scale with the
number of ticks. The most significant slowdown occurs in
LU Decomposition (7.44×, 354M tick executions), while
the least slowdown is in Assign (1.75×, 179M).

Result discussion: performance impact of reran-
domization frequency. Understandably, the rerandomiza-
tion was a major source of overhead; the geometric mean

UnprotectedOriginal With Adaptive rerand.

Figure 5: Image extraction results on LibJPEG using NPF
controlled-channel attack [8] against unprotected Unikraft
CVM vs. INCOGNITOS.

4202

Ovh.
(×) #Tick Ovh.

(×) #RR #PF Ovh.
(×) #RR #PF Ovh.

(×) #RR #PF Ovh.
(×) #RR #PF Ovh.

(×) #RR #PF

NumSort 3.29 326M 381.40 55K 5036.2 41.05 58K 4537.6 14.60 44K 2545.6 8.85 44K 2099.6 7.92 33K 1172.6
StrSort 3.24 313M 327.93 55K 4591.8 39.12 49K 3635 11.57 37K 2450.6 8.09 29K 1752.2 6.31 22K 1122.6
Bitfield 6.74 411M 186.96 53K 17216.6 30.30 38K 10092.8 16.56 24K 3643.4 13.96 20K 2161.4 12.33 15K 1218.6

EmFloat 3.43 291M 477.88 113K 11553.4 71.28 54K 3989.8 19.41 40K 2578.2 12.86 34K 1914 9.46 28K 1286.4
Fourier 5.40 289M 1726.60 76K 3189.4 217.53 52K 1758.4 53.16 44K 1375 30.26 39K 1199.2 18.64 32K 973.6
Assign 1.75 179M 182.40 55K 2598.2 20.44 53K 2236.4 6.24 36K 1404.2 4.25 27K 1035 3.07 19K 704.8
IDEA 5.28 327M 434.82 90K 14955.8 46.40 54K 8378.2 17.78 33K 4189 12.58 24K 2962 9.59 16K 1944.8

Huffman 3.63 289M 130.09 61K 10246.2 18.94 43K 6149.8 8.15 25K 2705.8 6.30 16K 1742.4 5.33 10K 1024.8
NNET 2.25 186M 1106.01 111K 4830.6 110.57 56K 2431 24.84 45K 1945.8 13.94 41K 1741.6 8.24 35K 1464.4

LU Dec. 7.44 354M 1541.90 52K 2558.2 203.94 50K 1885.8 53.91 44K 1418.4 34.12 42K 1118.6 24.02 40K 794.4

GeoMean 3.87 449.87 56.04 17.96 12.01 8.97

Benchmark

ReRand.
Disabled

Static Rerandomization

fStatic
ReRand =1/10K fStatic

ReRand =1/100K fStatic
ReRand =1/500K fStatic

ReRand =1/1M fStatic
ReRand =1/2M

TABLE 3: Performance overheads Ovh. of different INCOGNITOS configurations, compared against unmodified nbench
execution. Average number of executed synchronous ticks (#Tick), page faults (#PF) and rate-adaptive rerandomizations
(#RR) for each benchmark iteration are also reported. Number of synchronous ticks remains mostly constant across settings.

1K 2K 4K 8K
Requested file sizes

0

20

40

60

N
or

m
al

iz
ed

T
h

ro
u

gh
p

u
t

(×
)

101

103

105
R

eR
an

d
.

P
er

fo
rm

ed

fNormalReRand = 1/2M 1/1M 1/500K 1/100K 1/10K

Figure 6: Throughput of INCOGNITOS-hosted NGINX web
server with varied requested file sizes and rerandomization
frequency, normalized to the throughput of baseline NGINX
Unikraft. × marks number of rerandomizations performed.

of overhead in the benchmarks was lowest (8.97×) when
the rerandomization frequency was at 1/2M and highest
when at 1/10K (449.87×). Different benchmarks responded
differently to the varied rerandomization rate due to two
likely sources. The first is the size of the working set pages
for each benchmark, which affects the number of page faults
between each rerandomization. The second is the instruction
accumulation rate (proportional to the basic block sizes and
number of executed instructions), which impacts the number
of rerandomizations.

6.5. Real-world application performance

We evaluate the performance of INCOGNITOS with two
unmodified real-world applications built for Unikraft [50],
the NGINX web server, and Redis in-memory key-value
store. The results are presented in Figure 6 and Figure 7.

Experiment setup. For both NGINX and Redis, we ap-
plied intensive workloads using each program’s benchmark
tools. However, no side-channel attack was applied during
the benchmark. Also, we enabled INCOGNITOS’s adaptive
rerandomization with varied fNormal

ReRand. This means that the
short-lived rerandomization rate spikes are expected during
execution. All throughput measurements are normalized to
those of vanilla Unikraft running inside a CVM.

NGINX webserver. We measured the throughput (i.e.,
HTTPS requests processed per second) of the INCOG-

LPUSH GET
4K Payload Size

0

20

40

60

N
or

m
al

iz
ed

T
h

ro
u

gh
p

u
t

(×
)

LPUSH GET
8K Payload Size

101

103

105

R
eR

an
d

.
P

er
fo

rm
ed

fNormalReRand = 1/2M 1/1M 1/500K 1/100K 1/10K

Figure 7: Throughput of INCOGNITOS-hosted Redis in
back-to-back LPUSH and GET workloads with 4K and 8K
payloads, normalized to throughput of baseline Redis on
Unikraft. × marks number of rerandomizations performed.

NITOS-hosted NGINX with the Apache Benchmark tool
(ab) [60]. The keepalive option (-k) was not applied, which
makes each request perform a full connection establishment
to evaluate the worst-case scenario. We use ab to perform
1000 concurrent requests (-c 8) on the webserver to retrieve
files with varied file sizes: 1KB, 2KB, 4KB, and 8 KB.

Redis in-memory data store. Similarly, we use redis-
benchmark [61] to benchmark the performance of INCOG-
NITOS-enabled Redis server. We launched the Redis server
with a storage size of 64MB. We filled the server mem-
ory usage to its maximum using LPUSH for data storage,
followed by a GET workload. Each workload consisted of
10,000 requests, with payload sizes of 4KB and 8KB. The
benchmarking was set to use 50 parallel connections (-c
50) with TCP keepalive enabled (-k) and randomized access
keys (-r 10000). We obtained the throughput (commands
served per second) and compared it against the throughput
of an unmodified Redis workload deployed to Unikraft.

Result discussion:. fNormal
ReRand and performance trade-off

We found that the configurable rerandomization frequency
during benign execution fNormal

ReRand also closely correlated to the
performance overheads of real-world applications, similar
to the microbenchmark’s performance characteristics. Redis
and NGINX both saw significant overheads with the smallest
fNormal

ReRand of 1/10K, 42.67× and 44.84× on average for NG-
INX and Redis. However, with a relaxed fNormal

ReRand of 1/2M,

4203

the performance overheads dropped to 2.45× and 2.46×.
As shown throughout the security evaluation, this relaxed
fNormal

ReRand would maintain resilience under attacks thanks to
INCOGNITOS’s adaptive rerandomization policy. More ag-
gressive values for fNormal

ReRand may be chosen in anticipation of
attacks with very low exit rates.

Result discussion: performance loss from spikes.
The momentary benign spikes in VMExit frequencies were
sparse throughout the performance evaluation and con-
tributed minimally to the total overheads. In particular,
for NGINX and Redis, the maximum number of ticks be-
ing in an alarmed state observed was 1798 (0.006% of
all ticks) during serving 8K files and 1, 347, 282 (5.11%)
during LPUSH with 8K payloads. Note, we used the same
fAlarm

VMExit threshold across the evaluations (0.003), and lower
thresholds may be fine-tuned for a specific application to
reduce the impacts of spikes further. Based on this result,
we conclude that INCOGNITOS’s rerandomization policy
effectively suppresses obfuscation overheads.

7. Discussion

This section provides additional discussion of INCOG-
NITOS’s security and also outlines worthwhile future work.

7.1. Security discussion

We further analyze INCOGNITOS’s security in the fol-
lowing aspects.

Security of INCOGNITOS operations. Aside from the
obfuscated user program and kernel, INCOGNITOS’s op-
erations that achieve the obfuscation must leak no useful
information to the adversary. Specifically, here we assess
the security of the PF handler and ORAM page pool.

INCOGNITOS’s ORAM page pool includes careful de-
sign considerations such that it remains secure even under
a powerful adversary’s ongoing monitoring. As we ex-
plained, the ORAM’s sensitive components, the stash and
the position map, are implemented to leak no information.
INCOGNITOS’s secure stash implementation (§5.2) protects
the ORAM stash that the adversary can potentially identify
and monitor. Also, INCOGNITOS’s integration of ORAM
position map into the GPT ensures position map pages
are continuously randomized through GPT rerandomization,
rendering side-channel attacks extremely difficult.

In addition, the PF handler itself does not yield any use-
ful information. An adversary monitoring the PF handler’s
access patterns can only observe three types of information:
(1) obfuscated ORAM accesses during page-ins, (2) the
GPT levels where page-ins occur during the software GPT
walk, and (3) the type of page being paged-in inferred
from the destination active region. While (2) could reveal
proximity between gVA accesses (e.g., consecutive faults at
0xaa000 and 0xab000 could generate distinguishable page-
in patterns), INCOGNITOS’s GPT rerandomization scheme
prevents its exploitation. Regarding (3), it is already acces-
sible to the hypervisor through the NPF-controlled channel,

as established in §5.1, and thus does not compromise the
INCOGNITOS’s security model.

Potential even lower VMExit-rate attacks. Another
possible concern is the existence of attacks with even lower
VMExit rates that may evade INCOGNITOS’s threshold.

Stealthy attacks are primarily discussed in the context
of secret extraction, assuming that the program memory
layout is known or profiled [41], [62]. INCOGNITOS and
works on continuous rerandomization [26], [29], [63] can
thwart the adversary’s attempt on memory layout profil-
ing that must precede the extraction phase. The difficulty
of such profiling, not to mention constructing a precise
stealthy attack, can be approximated through recent works
on practical CVM attack studies [22], [23]. Heckler [22]
reported that the authors had to collect more than 100, 000
traces of page accesses with non-deterministic success rates
for profiling the target memory pages. Furthermore, even
when pessimistically assuming that the adversary somehow
achieved profiling within a single rerandomization window,
INCOGNITOS is evaluated to be effective in thwarting the
reasonably modeled low-NPF extraction attack (§6.3),

Generalization of such stealthy attacks or predicting
future occurrences is difficult. This is because they are
inherently specific to the target information in a specific
program. The stealthiness of the attack, defined by the
number of access traces required for data inference and the
noise generated from the relevant computation, cannot be
defined deterministically; the worst case may be a single
page’s activation that leaks the secret. However, we believe
that the current VMExit threshold can counter a large class
of stealthy attacks based on previous work [41], [62]. Many
of the previous stealthy attacks targeted SGX, and the equiv-
alent VMExit rate of similar attacks (if possible) on SEV-
SNP is not known. However, these so-called stealthy attacks
still require fairly high enclave exit periods (e.g., every
184–482 cycle [41]). To address future stealthy attacks,
INCOGNITOS’s configurable policy can be adjusted to strike
a balance between security and performance across various
scenarios.

Active region size and SEV ciphertext security.
Besides the tested attacks, INCOGNITOS’s rerandomization
scheme renders exploitation of SEV’s deterministic cipher-
text issue [21] rather difficult. As explained in §5.1, INCOG-
NITOS consciously maintains large (32MB = 8,192 slots)
active regions to obtain entropy. Even though INCOGNITOS
always chooses a random slot for new pages during page-ins
or rerandomization, the entropy is limited. However, moni-
toring constantly rerandomized 8,192 pages for appearances
of identical ciphertexts would be a daunting task.

We also considered alternative designs, but concluded
that our current scheme is sufficient and most practical. For
instance, compiler and binary instrumentation for applying
xor encryption to each sensitive memory load and store has
been proposed [27], [64], but show significant overheads
and are unlikely to be viable for full-system protection.
Another deterministically secure way would be never to
reuse a physical page for all pages during rerandomization,
but it would be too resource-intensive for the host system.

4204

7.2. Future work

We regard the following extensions to be worthwhile
future work that can further improve INCOGNITOS.

Multi-core support. The current prototype only sup-
ports single-core computation, which is sufficient to support
existing unikernel workloads. Supporting a full Symmet-
ric Multiprocessing (SMP) kernel remains a challenge, as
Unikraft’s SMP implementation is still under active devel-
opment [65]. A consideration for INCOGNITOS that must
accompany the incorporation of multi-core support is the
multi-core INCOGNITOS’s VMExit sampling issue. Since
the VMSA is maintained per core, INCOGNITOS’s sched-
uler must aggregate VMExit occurrences from all cores to
accurately gauge the CVM’s VMExit rate.

Improving unikernel’s internal security. The single
address space design and missing software attack mitiga-
tions are often discussed as the potential security weakness
of unikernels [66]. While the issue is orthogonal to our
threat model, we expect that INCOGNITOS will also benefit
from future security improvements to Unikraft. In fact,
Unikraft’s community is actively improving its security with
defenses such as page table isolation, shadow stack, and
CFI [67]. Besides, researchers also investigated lightweight
isolation mechanisms like Memory Protection Keys (MPKs)
in unikernels [66], [68], [69].

8. Additional Related work

We now examine related work on side-channel attacks
concerning SEV-SNP CVMs, along with side-channel miti-
gation approaches that were not discussed in §2.3.

8.1. Side-channel attacks on SEV-SNP

The use of side-channel in previous attacks can be
categorized into two main types: (1) identifying sensitive
pages or function executions as a preliminary step before
initiating more targeted attacks [18], [19], [20], [21], [22],
[23], [24], [44], [70], and (2) extracting secrets from the
CVM’s memory accesses that depend on sensitive informa-
tion [18], [21], [24], [43]. While most of the SEV-specific
vulnerabilities are already addressed in the latest version of
SEV-SNP, e.g., [19], [20], [21], [44], [70], their side-channel
components remain difficult to mitigate.

Profiling using controlled channel. All existing at-
tacks on SEV and its extensions require a profiling phase
with the coarse-grained NPF controlled channel (§2.2) to
infer locations of sensitive code/data pages within the guest’s
gPA space. Profiling attacks often undermine KASLR
through statistical analysis [18], [20], [22], [23] or by match-
ing page access patterns with known ones [49], [70].

CVM secret extraction. Secret extraction attacks re-
quire prior identification of sensitive code and data, allowing
the extraction of secret-dependent memory accesses. Previ-
ous work discussed secret extraction through fine-grained
side channels [18], [21], [24], [43] whose temporal reso-
lution is maximized through the single-stepping technique

(§2.2). SEV-Step [24] presents an L2 cache Prime+Probe
attack on the AES T-table for key extraction. Li and Wilke et
al. [18] enhance the now-patched CipherLeak [21] cipher-
text attack to perform secret key extraction without relying
on the encrypted VMSA. CipherSteal [43] infers input
data in protected DNN computation using the ciphertext side
channel.

8.2. Approaches for side-channel mitigation

Aside from the approaches we discussed in §2.3, there
are other proposals for side-channel mitigation, but with
certain limitations. Raccoon [71] is the first to discuss
obfuscation for side-channel mitigation in the context of
SGX by incorporating decoy execution and ORAM, which
incurs up to 1000× overheads on simple programs. Shinde
et al. [28] propose a deterministic multiplexing that forces
sensitive code and data accesses onto a single page but
incurs up to 4000× overheads on program execution. SGX-
Shield [72] introduces load-time address space randomiza-
tion for enclaves but would be defeated through online
access profiling. OBLIVIATE [73] introduces an obfuscated
file system for SGX enclaves. DR.SGX [63] proposes peri-
odic runtime enclave memory rerandomization at the cache-
line level. ZeroTrace [74] implements a memory interface
that uses ORAM to obfuscate memory accesses. Aside from
introducing significant overheads, DR.SGX and ZeroTrace
only support the obfuscation of data accesses. Finally, it is
unclear how previous systems would be adapted to support
CVM full-system memory access obfuscation.

9. Conclusion

This paper introduced INCOGNITOS, a unikernel design
for full-system CVM obfuscation that proposes a side-
channel defense strategy adapted to the attacker’s attack
attempts. We explained the design of INCOGNITOS that
retrofits the kernel scheduling and paging subsystems. The
scheduling subsystem enables robust VMExit rate measure-
ment and adaptive policy enforcement. The paging sub-
system enforces memory rerandomization through hardware
MMU access and remains transparent to unmodified applica-
tions. We performed thorough evaluations of INCOGNITOS
security and performance, demonstrating its robustness, re-
silience against real-world attacks, and efficiency through
adaptive rerandomization rate adjustment.

10. Acknowledgements

This work was supported by grants funded by the Ko-
rean government: the National Research Foundation of Ko-
rea (NRF) grant (NRF-2022R1C1C1010494), The Institute
of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (RS-2022-II221199, RS-2022-II220688, RS-
2024-00437306, RS-2024-00439819, RS-2024-00437849)
and The Korea Internet & Security Agency (KISA) grant
(1781000009).

4205

References

[1] I. Corporation, “Intel Software Guard Extensions (Intel
SGX),” 2024, last accessed March 08, 2024. [Online].
Available: https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/software-guard-extensions.html

[2] D. Kaplan, “AMD SEV-SNP: Strengthening VM Isolation with In-
tegrity Protection and More.”

[3] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A
Top-Down Approach,” Mar. 2023. [Online]. Available: http:
//arxiv.org/abs/2303.15540

[4] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure: Sgx cache attacks
are practical,” in Proceedings of the 11th USENIX Conference on
Offensive Technologies, ser. WOOT’17. USA: USENIX Association,
2017, p. 11.

[5] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks
on intel sgx,” in Proceedings of the 10th European Workshop
on Systems Security, ser. EuroSec’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3065913.3065915

[6] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A
practical attack framework for precise enclave execution control,”
in Proceedings of the 2nd Workshop on System Software for
Trusted Execution, ser. SysTEX’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3152701.3152706

[7] J. V. Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 178–195. [Online].
Available: https://doi.org/10.1145/3243734.3243822

[8] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems,” in 2015
IEEE Symp. Secur. Priv. San Jose, CA: IEEE, May 2015, pp. 640–
656.

[9] M. Hähnel, W. Cui, and M. Peinado, “High-Resolution Side
Channels for Untrusted Operating Systems,” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017, pp. 299–
312. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/hahnel

[10] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” CoRR, vol. abs/1703.06986,
2017. [Online]. Available: http://arxiv.org/abs/1703.06986

[11] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), 2019, pp. 142–157.

[12] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom
with transient Out-of-Order execution,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, p. 991–1008. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/bulck

[13] V. Costan and S. Devadas, “Intel SGX Explained,” 2016. [Online].
Available: https://eprint.iacr.org/2016/086

[14] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp.
857–874. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[15] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: an open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387532

[16] “AMD64 Architecture Programmer’s Manual, Volumes 1-5, 40332,
24592, 24593, 24594, 26568, 26569,” 2024.

[17] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell,
“Design and Verification of the Arm Confidential Compute
Architecture,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), 2022, pp. 465–484. [Online].
Available: https://www.usenix.org/conference/osdi22/presentation/li

[18] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A Systematic Look at Ciphertext Side Channels on AMD
SEV-SNP,” in 2022 IEEE Symp. Secur. Priv. SP, 2022, pp. 337–351.

[19] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Mon-
rose, “The SEVerESt Of Them All: Inference Attacks Against Secure
Virtual Enclaves,” in Proc. 2019 ACM Asia Conf. Comput. Commun.
Secur., ser. Asia CCS ’19. New York, NY, USA: Association for
Computing Machinery, Jul. 2019, pp. 73–85.

[20] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “SEVered: Sub-
verting AMD’s Virtual Machine Encryption,” in Proc. 11th Eur.
Workshop Syst. Secur., ser. EuroSec’18. New York, NY, USA:
Association for Computing Machinery, Apr. 2018, pp. 1–6.

[21] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel,” in 30th USENIX Secur. Symp. USENIX
Secur. 21, 2021, pp. 717–732. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity21/presentation/li-mengyuan

[22] B. Schlüter, S. Sridhara, M. Kuhne, A. Bertschi, and
S. Shinde, “HECKLER: Breaking confidential VMs with malicious
interrupts,” in 33rd USENIX Security Symposium (USENIX Security
24). Philadelphia, PA: USENIX Association, Aug. 2024, pp.
3459–3476. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/schl{ü}ter

[23] B. Schlüter, S. Sridhara, A. Bertschi, and S. Shinde, “WeSee: Using
malicious #vc interrupts to break AMD SEV-SNP,” in 2024 IEEE
Symposium on Security and Privacy (SP), 2024, pp. 4220–4238.

[24] L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth, “Sev-step:
A single-stepping framework for amd-sev,” 2023.

[25] M. Li, Y. Zhang, and Z. Lin, “CrossLine: Breaking "Security-by-
Crash" Based Memory Isolation in AMD SEV,” in Proc. 2021 ACM
SIGSAC Conf. Comput. Commun. Secur ., ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 2937–
2950.

[26] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “OBFUS-
CURO: A Commodity Obfuscation Engine on Intel SGX,” in Proc.
2019 Netw. Distrib. Syst. Secur. Symp. San Diego, CA: Internet
Society, 2019.

[27] J. Wichelmann, A. Rabich, A. Pätschke, and T. Eisenbarth, “Obelix:
Mitigating side-channels through dynamic obfuscation,” in 2024 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 189–189. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00182

[28] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing
Page Faults from Telling Your Secrets,” in Proc. 11th ACM Asia Conf.
Comput. Commun. Secur., ser. ASIA CCS ’16. New York, NY, USA:
Association for Computing Machinery, May 2016, pp. 317–328.

[29] P. Zhang, C. Song, H. Yin, D. Zou, E. Shi, and H. Jin, “Klotski:
Efficient Obfuscated Execution against Controlled-Channel Attacks,”
in Proc. Twenty-Fifth Int. Conf. Archit. Support Program. Lang. Oper.
Syst., ser. ASPLOS ’20. New York, NY, USA: Association for
Computing Machinery, Mar. 2020, pp. 1263–1276.

4206

[30] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting {SGX} Enclaves from Practical {Side-Channel}
Attacks,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 227–240. [Online]. Available: https://www.
usenix.org/conference/atc18/presentation/oleksenko

[31] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Proc.
2017 Netw. Distrib. Syst. Secur. Symp. San Diego, CA: Internet
Society, 2017.

[32] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged
Side-Channel Attacks in Shielded Execution with Déjà Vu,” in
Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’17. New York, NY,
USA: Association for Computing Machinery, Apr. 2017, pp. 7–18.
[Online]. Available: https://dl.acm.org/doi/10.1145/3052973.3053007

[33] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “Sgx-Lapd: Thwart-
ing Controlled Side Channel Attacks via Enclave Verifiable Page
Faults,” in Research in Attacks, Intrusions, and Defenses, M. Dacier,
M. Bailey, M. Polychronakis, and M. Antonakakis, Eds., vol. 10453.
Cham: Springer International Publishing, 2017, pp. 357–380.

[34] A. Ahmad, B. Ou, C. Liu, X. Zhang, and P. Fonseca, “Veil:
A protected services framework for confidential virtual machines,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 4, ser. ASPLOS ’23. New York, NY, USA:
Association for Computing Machinery, 2024, p. 378–393. [Online].
Available: https://doi.org/10.1145/3623278.3624763

[35] F. Schwarz and C. Rossow, “00SEVen – re-enabling virtual machine
forensics: Introspecting confidential VMs using privileged in-VM
agents,” in 33rd USENIX Security Symposium (USENIX Security
24). Philadelphia, PA: USENIX Association, Aug. 2024, pp.
1651–1668. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/schwarz

[36] V. Narayanan, C. Carvalho, A. Ruocco, G. Almasi, J. Bottomley,
M. Ye, T. Feldman-Fitzthum, D. Buono, H. Franke, and A. Burtsev,
“Remote attestation of confidential vms using ephemeral vtpms,”
in Proceedings of the 39th Annual Computer Security Applications
Conference, ser. ACSAC ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 732–743. [Online]. Available:
https://doi.org/10.1145/3627106.3627112

[37] A. Galanou, K. Bindlish, L. Preibsch, Y.-A. Pignolet, C. Fetzer,
and R. Kapitza, “Trustworthy confidential virtual machines for
the masses,” in Proceedings of the 24th International Middleware
Conference, ser. Middleware ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 316–328. [Online]. Available:
https://doi.org/10.1145/3590140.3629124

[38] D. Li, Z. Mi, C. Ji, Y. Tan, B. Zang, H. Guan, and
H. Chen, “Bifrost: Analysis and optimization of network I/O
tax in confidential virtual machines,” in 2023 USENIX Annual
Technical Conference (USENIX ATC 23). Boston, MA: USENIX
Association, Jul. 2023, pp. 1–15. [Online]. Available: https:
//www.usenix.org/conference/atc23/presentation/li-dingji

[39] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis, “Dune: Safe User-level Access to Privileged
{CPU } Features,” in 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012, pp. 335–
348. [Online]. Available: https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/belay

[40] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung,
G. Gain, C. Soldani, C. Lupu, c. Teodorescu, C. Răducanu,
C. Banu, L. Mathy, R. z. Deaconescu, C. Raiciu, and F. Huici,
“Unikraft: Fast, specialized unikernels the easy way,” in Proceedings
of the Sixteenth European Conference on Computer Systems,
ser. EuroSys ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 376–394. [Online]. Available:
https://doi.org/10.1145/3447786.3456248

[41] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark
land: Understanding memory side-channel hazards in sgx,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 2421–2434.
[Online]. Available: https://doi.org/10.1145/3133956.3134038

[42] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, “An off-chip
attack on hardware enclaves via the memory bus,” in Proceedings of
the 29th USENIX Conference on Security Symposium, ser. SEC’20.
USA: USENIX Association, 2020.

[43] Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and
Z. Su, “ CipherSteal: Stealing Input Data from TEE-Shielded
Neural Networks with Ciphertext Side Channels ,” in 2025 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, May 2025, pp. 79–79. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00079

[44] R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lü, A. Kogler,
and M. Schwarz, “CacheWarp: Software-based fault injection using
selective state reset,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024.

[45] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in 2019 IEEE
Symp. Secur. Priv. SP, May 2019, pp. 1–19.

[46] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[47] The QEMU Project Developers, “‘microvm’ virtual platform (mi-
crovm),” https://www.qemu.org/docs/master/system/i386/microvm.
html, (accessed 2024-01-23). [Online]. Available: https://qemu.org

[48] The Unikraft Authors, “Performance - unikraft,” https://unikraft.
org/docs/concepts/performance, (accessed 2024-01-23). [Online].
Available: https://unikraft.org

[49] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “SEVurity:
No Security Without Integrity : Breaking Integrity-Free Memory
Encryption with Minimal Assumptions,” in 2020 IEEE Symp. Secur.
Priv. SP, 2020, pp. 1483–1496.

[50] The Unikraft Authors, “Pre-built dynamic elfs,” (accessed 2024-01-
23). [Online]. Available: https://github.com/unikraft/dynamic-apps

[51] “Performance monitor counters for amd family
1ah model 00h- 0fh processors,” 2024. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/programmer-references/58550-0.01.pdf

[52] C. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, jan 1949. [Online]. Available:
https://doi.org/10.1109/jrproc.1949.232969

[53] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting
without control flow recovery,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 151–163. [Online]. Available:
https://doi.org/10.1145/3385412.3385972

[54] B. Chamith, B. J. Svensson, L. Dalessandro, and R. R. Newton,
“Instruction punning: lightweight instrumentation for x86-64,”
SIGPLAN Not., vol. 52, no. 6, p. 320–332, jun 2017. [Online].
Available: https://doi.org/10.1145/3140587.3062344

[55] K.-H. Chow, U. Deshpande, S. Seshadri, and L. Liu, “Deeprest: deep
resource estimation for interactive microservices,” in Proceedings
of the Seventeenth European Conference on Computer Systems,
ser. EuroSys ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 181–198. [Online]. Available:
https://doi.org/10.1145/3492321.3519564

4207

[56] S. ur Rehman Baig, W. Iqbal, J. L. Berral, and D. Carrera, “Adaptive
sliding windows for improved estimation of data center resource
utilization,” Future Generation Computer Systems, vol. 104, pp.
212–224, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X19309203

[57] E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path ORAM: An Extremely Simple Obliv-
ious RAM Protocol,” J. ACM, vol. 65, no. 4, pp. 18:1–18:26, Apr.
2018.

[58] U. Maintainers, “Unikraft releases v0.15.0 (Pandora) ,” https:
//unikraft.org/blog/2023-10-22-unikraft-releases-pandora, 2023, last
accessed Jan 14 , 2024,.

[59] Uwe F. Mayer, “Linux/Unix nbench,” https://www.math.utah.edu/
~mayer/linux/bmark.html, 2017, last accessed March 08, 2022.

[60] T. A. S. Foundation, “ab - Apache HTTP server benchmarking
tool,” https://httpd.apache.org/docs/2.4/programs/ab.html, 2022, last
accessed Jan 14 , 2024,.

[61] R. Inc., “Redis benchmark,” https://redis.io/docs/latest/operate/oss_
and_stack/management/optimization/benchmarkshttps://redis.io/docs/
latest/operate/oss_and_stack/management/optimization/benchmarks/,
2022, last accessed Jan 14 , 2024,.

[62] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx, “Telling your secrets without page faults:
Stealthy page Table-Based attacks on enclaved execution,”
in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp.
1041–1056. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/van-bulck

[63] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “Dr.sgx: automated and adjustable side-
channel protection for sgx using data location randomization,” in
Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 788–800. [Online]. Available:
https://doi.org/10.1145/3359789.3359809

[64] J. Wichelmann, A. Pätschke, L. Wilke, and T. Eisenbarth,
“Cipherfix: Mitigating Ciphertext Side-Channel Attacks in
Software,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
6789–6806. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/wichelmann

[65] The Unikraft Authors, “Smp-safe unikraft core,” (accessed 2024-01-
23). [Online]. Available: https://github.com/unikraft/unikraft/issues/
587

[66] M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel
isolation with intel memory protection keys,” in Proceedings of the
16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 143–156. [Online].
Available: https://doi.org/10.1145/3381052.3381326

[67] U. Maintainers, “Security,” https://unikraft.org/docs/concepts/
security, 2023, last accessed Jan 14 , 2024,.

[68] H. Lefeuvre, V.-A. Bădoiu, A. Jung, S. L. Teodorescu, S. Rauch,
F. Huici, C. Raiciu, and P. Olivier, “FlexOS: Towards flexible OS
isolation,” in Proc. 27th ACM Int. Conf. Archit. Support Program
. Lang. Oper. Syst., ser. ASPLOS ’22. New York, NY, USA:
Association for Computing Machinery, Feb. 2022, pp. 467–482.

[69] V. A. Sartakov, L. Vilanova, and P. Pietzuch, “CubicleOS: A library
OS with software componentisation for practical isolation,” in Proc.
26th ACM Int. Conf. Archit. Support Program . Lang. Oper. Syst., ser.
ASPLOS 2021. New York, NY, USA: Association for Computing
Machinery, Apr. 2021, pp. 546–558.

[70] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted
Virtualization,” in 28th USENIX Secur. Symp. USENIX Secur.
19. Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1257–1272. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/li-mengyuan

[71] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital
Side-Channels through Obfuscated Execution,” in 24th USENIX
Secur. Symp. USENIX Secur. 15 Wash. DC USA August 12-14
2015, J. Jung and T. Holz, Eds. USENIX Association, 2015,
pp. 431–446. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/rane

[72] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“SGX-Shield: Enabling Address Space Layout Randomization for
SGX Programs.” in NDSS, 2017.

[73] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A Data
Oblivious Filesystem for Intel SGX,” in Proc. 2018 Netw. Distrib.
Syst. Secur. Symp. San Diego, CA: Internet Society, 2018.

[74] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace : Oblivious
Memory Primitives from Intel SGX,” in Proc. 2018 Netw. Distrib.
Syst. Secur. Symp. San Diego, CA: Internet Society, 2018.

4208

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents INCOGNITOS, a system that ob-
fuscates (at specific learned intervals) the memory of a
Confidential VM (CVM). The system leverages Oblivious
RAM (ORAM). The challenge is leveraging ORAM in a
practical fashion to entire VM executions. To solve these, the
paper leverages a unikernel design (based on Unikraft) and
an adaptive exit-rate-based algorithm. The system incurs 2-4
times overhead during execution of real-world programs.

A.2. Scientific Contributions

• Provides a valuable step forward in an established field
• Creates a new tool to enable future science
• Establishes a new research direction

A.3. Reasons for Acceptance

1) Side-channels remain a problem for CVMs. The re-
viewers appreciated how the paper positioned itself
in the domain of side-channel mitigations for existing
TEEs like SGX, especially ones that have leveraged
ORAM. The system designed by INCOGNITOS helps
advance our understanding of ORAM’s application into
whole VM TEEs.

2) The system designed in this paper can help other
researchers develop ORAM-specific mitigations for
CVMs.

A.4. Noteworthy Concerns

The paper leaves core features (including multi-
threading support and defense against other side-channels
like cache) as part of future work or out-of-scope.

4209

