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Abstract—Demand for data-intensive workloads and confidential computing are the prominent research directions shaping the future

of cloud computing. Computer architectures are evolving to accommodate the computing of large data. Meanwhile, a plethora of works

has explored protecting the confidentiality of the in-cloud computation in the context of hardware-based secure enclaves. However, the

approach has faced challenges in achieving efficient large data computation. In this article, we present a novel design, called SE-PIM,

that retrofits Processing-In-Memory (PIM) as a data-intensive confidential computing accelerator. PIM-accelerated computation

renders large data computation highly efficient by minimizing data movement. Based on our observation that moving computation

closer to memory can achieve efficiency of computation and confidentiality of the processed information simultaneously, we study the

advantages of confidential computing insidememory. We construct our findings into a software-hardware co-design called SE-PIM. Our

design illustrates the advantages of PIM-based confidential computing acceleration. We study the challenges in adapting PIM in

confidential computing and propose a set of imperative changes, as well as a programming model that can utilize them. Our evaluation

shows SE-PIM can provide a side-channel resistant secure computation offloading and run data-intensive applications with negligible

performance overhead compared to the baseline PIM model.

Index Terms—Processor-in-memory, confidential computing

Ç

1 INTRODUCTION

TODAY’S cloud computing is facing two urgent challenges:
improving efficiency in data-centric computation and

providing confidentiality of sensitive data computation.
Data-intensive workloads such as large data analytics and
training of neural networks have become the most common
use cases of the cloud. Recent advancements and future
research directions in processor architectures, accelerators,
and memory technology are also centered around this
trend. Ensuring the confidentiality of the computation in
the cloud is another agenda shaping the future of cloud
computing. Many cloud service providers are already pro-
viding confidential computing services that adapt security
extensions to modern processor architectures [1], [2], [3].

Many previous works have proposed methods for secur-
ing data computation in the cloud based on commonly
available processor-supported secure enclaves [4], [5], [6].
Secure enclaves such as Intel SGX [7] allow the construction
of a robust security model in which the data and its compu-
tation are protected from possibly malicious cloud service
providers and co-tenants. The code and data inside an

enclave are only visible when a thread is in enclave mode
and protected from any other software, including the OS
kernel. Also, enclave-protected contents are encrypted
upon leaving the CPU package to memory. Applications
can be modified or developed to protect sensitive code and
data by placing them inside enclaves. For instance, VC3 [4]
retrofits the MapReduce framework to protect processed
data, and Occlumency [5] proposes SGX-protected deep
learning inference. Secure enclaves in the cloud also have
limited memory (e.g., 128 MB in the case of SGXv1) [8]. This
is a critical impediment for adapting SGX to data-intensive
applications; existing works resorted to splitting workloads
into batches due to the limited memory accepting the per-
formance degradation and additional complexity in pro-
gramming [5], [6].

Additionally, recent works have revealed that upholding
a robust security model of secure enclaves amid surround-
ing threats proved to be much more complicated than ini-
tially considered. Studies showed that side-channel attacks
are sufficient to compromise the confidentiality of the com-
putation encapsulated by secure enclaves [9], [10], [11].
Especially, researchers have shown that even when the
memory content of a secure enclave is automatically
encrypted by hardware, the data access pattern on the bus
could still leak sensitive information about the enclave exe-
cution [11]. To this end, many works proposed defenses
that hide the data access pattern of secure enclaves. Oblivi-
ous RAM (ORAM)-based approaches for SGX have been
explored by many works [12], [13], [14]. Those approaches
transform the protected program such that its memory
access pattern appears random across different executions.
However, applying ORAM to a program makes its memory
access time and throughout several magnitudes slower than
native [12], [13]. In response, hardware-based approaches
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are proposed that provide ORAM-like security, but without
the prohibitive performance overhead [15], [16], [17]. Those
approaches establish a secure channel between a host-side
memory controller (software or hardware) and external
memory with computing capabilities (e.g., 3D-stacked
memory or an FPGA device). For instance, Trustore [17]
propose using an enclave-protected software memory con-
troller and a trusted FPGA device that serves as secure
memory. The approach attains significant performance
improvements over ORAM-based approaches, showing its
practicality. However, those approaches leave the side-
channels incurred from the enclave execution (e.g., control-
flow side-channels) out of scope and only protect the access
pattern of the memory controller. The design of SE-PIM is
based on the following observation: first, moving sensitive
computation from the secure enclaves into memory hides
the memory access pattern. Second, it also narrows the
attack surface of confidential computations against CPU-
based side-channels.

Another struggle in the cloud is to overcome the data
movement bottleneck, which is often referred to as the mem-
ory wall problem. The size of the processed data sets is ever-
increasing, and computer architectures and the cloud are
evolving to become more efficient in computing over large
data sets. Today’s computer architectures spend more than
half of their cyclesmoving the data. The near-data processing
approach seeks to solve the problem by enabling computa-
tion inside storage devices to minimize data movement [18],
[19], [20]. Processing-In-Memory (PIM) is one of the most
prominent directions in the trend [18], [21], [22], [23]. In fact,
many semiconductor makers have disclosed their plans for
processor-embedding memory devices [24], [25]. The idea is
to bring the computation inside memory such that the com-
putation enjoys very low-latency access to data residing in
memory and, at the same time, minimizes unnecessary data
movement through the system bus. The approach is actively
being explored by the industry [24], [26] and in academia [21],
[22], [27], [28], [29]. PIM-accelerated computation of large
data has shown its potential through many works [27], [28],
[30], [31], [32], [33], [34], [35]. Notably, a few works [15], [16],
[36], [37] have explored the use of PIM for security. For
instance, [15], [16] proposed PIM-assisted address side-chan-
nel mitigation on the system bus.

This work presents a novel CPU-Memory cooperation
model for confidential computing, based on our observation
that PIM can simultaneously achieve confidentiality and
efficiency in large data computation in the cloud. Moving
data to computation (i.e., the main processor) creates a con-
straint on the memory channel and may create side chan-
nels along the way. We argue that bringing computation to
memory instead of the opposite significantly reduces the
attack surface against confidential computing. However,
security requirements and applications of PIM are still
underexplored. We explain our study on the security model
and programming model for enclave functionality in PIM
and generalize them into a software-hardware co-design
called Secure Computation Exentesion for PIM (SE-PIM). Then,
we show the merits of secure acceleration provided by PIM
in two aspects. First, SE-PIM can function as a side-channel
resistant trusted memory extension for secure enclaves to
overcome the memory limitation. Second, SE-PIM can turn a

memory module into secure in-memory accelerators to
facilitate fast large data computation that is infeasible in the
current processor enclave design (i.e., Intel SGX). We sum-
marize the contributions of this work as the following:

� This is the first work that explores the potential of
PIM as a secure computation accelerator and dis-
cusses its inherent advantages.

� We present a novel design for confidential comput-
ing using PIM by studying the design space and per-
forming a thorough security requirements analysis.

� We outlined the challenges in terms of security and
performance when using PIM as an accelerator for
confidential computation.

� We propose a set of non-intrusive yet imperative
modifications to the PIM architecture for ensuring
the confidentiality and integrity of data and compu-
tation inside the memory.

� We evaluate our design through a confidential com-
putation of data-intensive workloads on our archi-
tecture to show that our proposal for PIM-based
confidential computing achieves both efficiency and
security.

2 BACKGROUND AND RELATED WORK

This section includes the background and related works of
SE-PIM. Our work is primarily motivated by recent develop-
ments and the upcoming integrations of PIM architectures
described in Section 2.1. Our work introduces a cooperation
model for confidential computation that addresses the chal-
lenges of CPU-based enclaves (e.g., the lack of memory and
side-channels). We explain the background for those chal-
lenges and the related work in Section 2.2.

2.1 Processing-In-Memory

Processing-In-Memory (PIM) is a general direction towards
embedding processing capability inside memories to over-
come the memory bandwidth bottleneck, as today’s work-
load is becoming more and more data-intensive. We briefly
explain the existing works on PIM from both the industry
and academia.

PIM Hardware Architectures. The progress made in 3D-
stacked memory technology enabled the embedding of logic
or even processors into memory. Two of the most promi-
nent example of 3D-stacked memory are Hybrid memory
cube (HMC) [38], and High Bandwidth Memory (HBM) [24],
[25]. Fig. 1 demonstrates the architecture of 3D-stacked
memory and the PIM layer. Stacked memory architectures
vertically stack DRAM layers on top of each other and
connect the vertical partitions of memory using high-band-
width through-silicon vias (TSVs). A typical 3D-stacked

Fig. 1. Processing-In-Memory layer in 3D-stacked memory.
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memory configuration can employ thousands of TSVs [39],
which makes its internal memory bandwidth far exceed
that of traditional memory systems. At the bottom of the
memory stacks is a PIM layer, or logic layer, that can host
hardware logic that can interact with both the host proces-
sor and the DRAM memory. The PIM layer can be special-
purpose hardware logic [15], [32] that is embedded into the
memory chip, or a general-purpose processor [24], [26],
[29], [30], [40] that runs software called the PIM kernels, anal-
ogous to the kernels loaded onto GPUs. Most 3D-stacked
PIM architecture requires changes to the host-side proces-
sor [40], but PIM architectures that can integrate with com-
modity processors also exist [26], [40], [41]. UPMEM [26]
introduced its PIM architecture on a traditional DRAM
chip. Lee et al. [40] designed and implemented a general-
ized PIM architecture and programming model to support
PIM-accelerated DNN computation on HBM memory. Both
of these prototypes have real hardware implementations
and are compatible with off-the-shelf systems [40], [41].

2.2 Confidential Computing in Cloud and
Challenges

Supporting confidential computing in the untrusted cloud is
a common goal shared by the industry and academia, as
evidenced by confidential computing services being offered
by cloud service providers [1], [2], [3].

Secure Enclaves and the Cloud. Modern processor architec-
tures support secure enclaves for isolated execution of sen-
sitive code and data. Intel SGX [7] is the most commonly
available secure enclave in the cloud. SGX provides pro-
tected memory pages called Enclave Page Cache (EPC) in
which the sensitive subset of a program and processed data
can be protected. Memory accesses from the processor to
the EPC region are automatically encrypted on the memory
bus by the memory encryption engine [8]. A remote user
can verify the integrity of a deployed enclave through
remote attestation, a procedure that allows an enclave to attest
its code and data with a measurement signed by a secure
hardware cryptographic key.

Memory Limitations of Secure Enclaves. The limited mem-
ory capacity is one of the main factors that hinder the adop-
tion of SGX-based secure enclaves. SGX has a limited EPC
capacity of 128MB; large data computation has to be broken
down into smaller batches [5], [6]. DNN model-based infer-
ence frameworks that are aware of and optimized for the
SGX’s memory limitations are also proposed [5], [43]. More-
over, it is shown that EPC page swapping is expensive
when a large amount of secure memory is used [13] (up to
1000� performance overhead). Designs for external secure
storage devices for secure enclaves are also explored by sev-
eral works to complement SGX’s memory limitation [15],
[16], [17].

Side-Channel Attacks on Enclaves. Researchers have shown
that secure enclaves can fall vulnerable to side-channel
attacks. Especially, the microarchitectural side-channels
and the data access pattern captured on the memory bus are
shown to be exploitable against SGX secure enclaves to
undermine the confidentiality of the computed data [9],
[10], [11], [44]. Microarchitectural side-channel attacks
exploit microarchitectural resources sharing to extract sensitive

information about the enclave execution [9], [10]. For
instance, attackers can infer secret-dependent cache line
accesses of an enclave based on the cache timing [10].

The access patterns that incur from memory requests of
the secure enclave are also a known side-channel of SGX
enclaves [8]. The premise for such a side-channel is that
SGX only encrypts the content data of memory packets
(Packet P = (addr, data)), while the address addr is visible to
the attackers that place a physical snooping device on the
memory bus. The attack vector is recently realized by the
Membuster [11] attack, which demonstrates that the adver-
saries are able to leak sensitive information from the address
side-channel of SGX enclaves.

Oblivious RAM and SGX Enclaves.Oblivious RAM (ORAM)
[45], [46], [47] algorithms have been accepted as general miti-
gation for access pattern side-channels. ORAM algorithms
transform the original data accesses into sequences of obfus-
cated accesses that appear uniform to attackers [45], [46].
There have been adaptations of ORAM to SGX enclaves [12],
[13] to hide the enclave’s access patterns to sensitive data
structures. However, the remarkably high performance over-
head of ORAM-based approaches remains an obstacle in
widespread adoption.

Extending Trust From Enclave to Peripheral Devices. SGX’s
security model requires the device to actively participate in
establishing a trusted I/O path. Many works have proposed
secure peripheral devices that complement or cooperate
with SGX in confidential cloud computing [15], [16], [17],
[42]. These devices support remote attestation and secure
communication channel establishment with a host secure
enclave while offering varying functionalities.

One of such functionalities is secure hardware accelera-
tion. Graviton [42] proposed a set of GPU hardware modifi-
cations to support secure sessions between a host enclave
and the GPU and the isolation between GPU contexts. Simi-
larly, Telekine [48] employs API remoting to allow remote
users to utilize cloud GPUs with Graviton-like features
without a host enclave.

Motivated by the high overhead of ORAM algorithms,
secure storage designs are proposed as an alternative. These
designs offer ORAM-like security guarantees at much lower
overheads. TrustOre [17] establishes an encrypted channel
between an SGX enclave and the secure FPGA-based device
to provide side-channel-free external storage. Invisi-
mem [15] and Obfusmem [16] introduced encryption capa-
bilities to both the CPU-side and the memory-side
controllers to build a secure channel on the memory bus.
Such designs, however, require modification to the CPU
and the memory bus.

Table 1 draws a comparison between SE-PIM and the
aforementioned existing works on the secure devices for
confidential computing in the cloud. Graviton [42] pre-
sented a unique design for supporting confidential comput-
ing in GPUs and showed its efficacy through simulation-
based evaluation. SE-PIM explores the confidential computing
in the new accelerator for large data computation that is
PIM. SE-PIM provides both secure storage and computation
functionalities. The secure storage design is inspired by
TrustOre [17]’s fixed DMA/MMIO channel for secure stor-
age. The existing works [15], [16] equip smart memory, which
we classify as a type of PIM, with cryptographic primitives
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to the memory device. By doing so, they allow the host CPU
enclave and memory to cooperate in eliminating side-chan-
nel on the system bus and also facilitate encryption of data
stored in memory. SE-PIM, on the other hand, retrofits a more
advanced PIM model in which a general-purpose processor
inside memory cooperates with the CPU enclave for confi-
dential computation. To this end, SE-PIM identifies and
addresses unique attack vectors that arise during computa-
tion. Another difference is that SE-PIM does not assume host
CPU architecture modification.

3 SE-PIM OBJECTIVES AND CHALLENGES

In this section, we first establish the design objectives of SE-
PIM. We then explain the generalized baseline PIM architec-
ture, on which SE-PIM’s design proposals construct confiden-
tial computing capabilities. Against the threat model, which
is also explained in this section, we explain the unique chal-
lenges that our design must mitigate.

3.1 Design Objectives of SE-PIM

Our goal is to enable the memory to actively cooperate with
a CPU-based enclave to perform confidential computation.
Hence, our system functions as a secure memory extension
for the host enclave and a secure accelerator for data-inten-
sive computation. We identify the high-level objectives for
SE-PIM as follows, while specific security objectives are fur-
ther discussed in our security analysis in Section 8.1.

SE-PIM is a Trusted Memory Extension. One of the SE-PIM’s
objectives is to function as a secure memory extension that
supplements the limited memory capabilities of secure
enclaves. The memory limitation of secure enclaves is a sub-
stantial problem that impedes the widespread adoption of
confidential computing for large data. Many works pro-
posed partitioning large data into batches that fit into the
enclave memory space, but at the cost of performance [5],
[6]. On the other hand, turning memory into an active entity
in secure data storage and processing can solve the problem
of limited memory space in cloud enclaves.

SE-PIM Enables Secure Large Data Computation Acceleration.
PIM-enabled memory devices are on the horizon [24], [25],
[26], [40] and their advantages in accelerating data-intensive
cloud workloads have been demonstrated [31], [40], [41],
[49]. Our objective is to take advantage of the processing
capability of PIM by allowing the host enclaves to launch a
protected PIM kernel on SE-PIM-enabled memory banks.

Furthermore, our hardware modifications must not intro-
duce significant overhead to PIM computation.

We observe that PIM can inherently reduce the attack
surface to many side-channel attacks that have been an exis-
tential threat to many processor enclaves [9], [44], [50]. Per-
forming computations where the data resides eliminates
side-channels from the runtime data movement on the mem-
ory bus or stored in shared storage, such as the processor
caches [9]. We observe that such zero-copy data transfer in
PIM-assisted computations, inherently minimizing the
address side-channels on the memory bus [11].

3.2 Baseline PIM

We first explain a generalized PIM architecture without sup-
port for confidential computing and its programmingmodel,
named Baseline-PIM. Using Baseline-PIM architec-
ture, we explain the challenges in SE-PIM’s imperative addi-
tions to Baseline-PIM for confidential computing.

Baseline-PIM Architecture. Our baseline PIM model
(Baseline-PIM) is a generalization of several works that
introduces compute capabilities to memory [27], [30], [41].
We assume that in each memory bank of a memory module
(e.g., 3D-stacked memory or DIMM memory stick), there is
an integration of a programmable processing core (i.e., the
PIM core). The PIM cores can execute PIM kernels – pro-
gram binaries compiled to run on a PIM core. As to the
processing capacity of these processors, they often lack pro-
cessor caches [26], [29], [51], and are armed with a low-
latency on-chip memory, or PIM local memory [26], [29], [52].
The local memory stores the PIM kernel and data a PIM
core operates on. The PIM core accesses data inside a mem-
ory bank through direct memory access (DMA): it requests the
on-chip DMA engine to fetch batches of data into its local
memory and process the data there. We do not assume
architectural support for cache coherency between the PIM
core and the host processor. A cache coherence scheme
often requires PIM-aware changes to the host processor
architectures [28], [53]. Consequently, our current design
does not involve concurrent computation on the same data
between the PIM core and the host processor.

Host-Side Access to Memory. The memory bank of Base-
line-PIM can be used as the normal memory space for the
host program. We assume a direct mapping approach for
data transfer between the host process and PIM-enabled
memory banks: the physical address space of the memory

TABLE 1
Comparison Between SE-PIM and Other Proposed Architectures

Device Computation Objective Method

TrustOre [17] FPGA CPU (TEE) Secure external storage (PCI-E) for CPU TEE,
data and addresss confidentiality

Establish secure TEE-FPGA channel
with fixed DMA/MMIO address and
size

Graviton [42] GPU CPU (TEE)
+GPU

Confidential computation acceleration using
GPU

Introduce GPU supports for secure
GPU sessions & GPU contexts
isolation

Invisimem [15],
Obfusmem [16]

PIM CPU (TEE) Secure memory for CPU TEE, data and
address confidentiality of bus packets

Extend CPU’s memory controller to
achive encrypted bus packets with
smart memory

SE-PIM PIM CPU (TEE)
+PIM

(1) Secure storage (DRAM), (2) Confidential
computation acceleration using PIM

(1) DRAM lockdown & controlled
data access, (2) Secure PIM sessions
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bank is mapped by the driver into a contiguous address
range in the host process (demonstrated in Fig. 2). The CPU
uses the mapped addresses to transfer data into the memory
bank directly (the data channel). We assume an uncached
mapping for the PIM memory banks for data coherency
between the host CPU and PIM such that the memory modi-
fications in the host are immediately visible to PIM. Base-
line-PIMmust also support address translation on the PIM
core because the host and PIM use different address spaces.
To achieve this, the PIM core and the host process share a
contiguous memory range with a direct mapping scheme, a
common design seen in PIM designs [27]. The PIM core can
obtain the in-bank physical address from the host virtual
address through a constant offset (pim_addr¼ host_addr

� C), for all shared addresses. all shared addresses.
Interfaces Between Host and PIM. A host program is typi-

cally employed to control the execution of the PIM cores.
Similar to most I/O devices, the host process and Base-

line-PIM communicate using two interfaces, memory-
mapped I/O (MMIO), and DMA. For MMIO-based communi-
cations, the PIM system exposes registers to the host
address space, which are used to send commands to the PIM
units to control their execution. We refer to this as the com-
mand channel (CMD CH in Fig. 2). DMA-based communica-
tion in Baseline-PIM copies data within the memory
bank into PIM local memory using the fast PIM bus close to
the memory. Hence, PIM-based DMA is different from the
DMA communication of other devices that requires data to
move across the slow peripheral buses. The host uses the
DMA buffer to send parameters, a data structure containing
arguments for the PIM kernel (e.g., pointers to data inside
memory) and commands. We refer to this channel for com-
munication as the parameter channel (PARAM CH in Fig. 2).
In order to utilize PIM, the host program loads the PIM ker-
nel into PIM local memory (typically via MMIO [29], [41]),
writes the parameters that have the function name and its
arguments into the parameter channel, and sends a com-
mand to the command channel to start executing the PIM
kernel. The PIM core then fetches the parameters into its
local memory and executes the requested function with the
arguments

Zero-Copy Data Exchange. PIM computations typically
utilize zero-copy data exchanges. As demonstrated in Fig. 2,
a PIM kernel receives pointers to data already located
within memory as the arguments for execution. The PIM
kernel then uses the pointers as the source address to fetch
data into the local memory for processing with efficient
DMA transfers. With zero-copy, data exchanges on the

slow memory bus are reduced, and efficiency is achieved
in terms of bandwidth utilization and CPU cycles [29],
[30], [39].

3.3 Threat Model

We protect the integrity and confidentiality of the data used
by SE-PIM and the host enclave. We also guarantee the elimi-
nation of observable access patterns to the in-SE-PIM data on
the memory bus. We only trust the SE-PIM-enabled memory
module and the host CPU enclaves in our threat model. We
also assume The physical security of tightly integrated
hardware packages. This is a common underlying assump-
tion in secure processor implementation (e.g., Intel SGX [8])
and academic proposals of trusted peripheral devices [15],
[17], [42]. PIM hardware packages are often connected with
highly integrated connections (e.g.,Through-Silicon Vias
(TSV)). For this reason, we assume that physical attacks
such as using hardware probes to snoop data contents from
the PIM package are infeasible [15], [16].

We assume that the OS can be malicious or compromised
by malware. We also assume that the adversaries may have
physical access to the machine. More specifically, the adver-
sary may launch a physical probing attack on the system
memory bus to leak information about the confidential com-
putation, as such an attack was proven feasible through a
research work [11]. Realistically, such physical access can be
obtained by, for instance, an employee of the cloud provider
who is determined to leak customer secrets out of curiosity or
for profit. The above attack model is in line with the security
model of SGX [8], [54], SGX-based confidential computation
in the cloud [12], [13] , and also secure peripheral devices that
support confidential computing [15], [16], [17], [42].

Side-channel attacks that take advantage of CPU’s micro-
architectural characteristics [9], [55] are out of our protec-
tion scope. The host enclave can offload sensitive operations
to SE-PIM units to reduce the attack surface. Rowhammer
attack [56], [57], electromagnetic side-channels [58], power
side-channels [59] and similar attacks are not in the scope of
our protection. The discovery of such attacks and their miti-
gation is still an open challenge, and it is rather difficult to
formulate a tangible attack model and mitigation specifi-
cally for PIM. Hence, we instead discuss orthogonal works
that have discussed countermeasures for such attack vectors
in Section 8.2.

3.4 Challenges

PIM exhibits many inherent strengths as a side-channel
resistant confidential computing accelerator for host
enclaves. However, the required design changes for PIM
architectures have not been explored to the best of our
knowledge. Our contribution lies in identifying the unique
challenges and proposing a set of design changes for miti-
gating them.

We start by introducing rudimentary features that are
essential for confidential computation into the aforemen-
tioned Baseline-PIM. We assume that the attestation and
secure channel establishment capabilities are in place, simi-
lar to previously proposed secure hardware accelerator
architectures [15], [17], [42]. This means that both parties –
the host enclave and PIM – communicate through encrypted

Fig. 2. Communication interfaces between the host and PIM using map-
pings of memory in host process address space.
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channels to exchange commands and data. The encrypted
data is stored in the memory banks and only to be decrypted
inside PIM localmemorywhen the PIM core proceeds to pro-
cess the data.

However, critical challenges remain in securing the
workload computation performed in cooperation between
the host enclave and PIM. We rigorously inspect all attack
vectors that may allow the adversary to leak information
about the SE-PIM-assisted confidential computation. Fig. 3
summarizes the challenges that we identify. In the rest of
this section, we explain the challenges in depth.

C1: Performance Overhead of End-to-End Encryption. It is
essential that the command and data channels between the
host and core are encapsulated with an end-to-end
encrypted channel. However, we found that this is infeasi-
ble without hardware acceleration for encryption. To sup-
port our point, we evaluated the performance of working
with encrypted data using software-based AES using
mbedtls on UPMEM’s real PIM hardware [26], [41]. The
performance of encrypted DMA transfers is measured in
both ways; the PIM core encrypts the data before transfer-
ring it from its local memory to the memory bank and
decrypts the data as the data comes in the reverse direc-
tion. We measured the latency of each transfer from the
initiation of encryption/decryption to the completion of
the DMA transfer.

As shown in Fig. 4, software AES incurs immense perfor-
mance overhead. The throughput plummeted from 600
MB/s to 0.5 MB/s, around 1200� lower throughput for
both read and write. The results convinced us that hardware
acceleration for symmetric key cryptography must be
included for confidential computing in PIM design. Unlike
convention accelerators (e.g., GPU), PIM designs have more
constraints in terms of power and area constraints, which
will always be their limiting factors [25], [38], [41].

C2: Address Side-Channel on Memory Bus. We observe that
when the host access PIM memory banks by writing to the
memory mappings of Baseline-PIM, an attacker can cap-
ture the accessed physical addresses on the memory bus
with a snooping device. The attack vector was shown
exploitable even on SGX secure enclave, where the memory
content is encrypted [11]. Sequential data placement into
the memory bank does not generate observable access

patterns, but host-side data accesses that are parts of the
data processing computation can leak sensitive information
about data.

C3: Side-Channels From Memory Content Changes. In
Baseline-PIM, the memory bank mapping is managed
by the untrusted OS. The untrusted OS can directly access
the memory content of Baseline-PIM through the mem-
ory mapping or map the bank memory into a malicious
process’s address space. In addition, an attacker-controller
DMA device on the same system can also access the
bank’s content. Even though data inside the bank can be
encrypted, an attacker can take snapshots of the memory
and extract the changes in the memory content made by
the PIM kernel. Due to the limited size of the PIM’s local
memory, the PIM kernel must work with the encrypted
data in batches, which is not necessarily sequential. A
batch of data will be fetched from the memory bank to be
decrypted and processed. Then, depending on the PIM
kernel logic, the memory content might be updated with
new values. Such operations may inadvertently create rec-
ognizable patterns in the eyes of the passive adversary.
Research has shown that by only observing the memory
change over time, attackers can recover sensitive informa-
tion about the unencrypted data [60].

C4: Memory Splicing and Replaying Attacks.Using the same
access methods described previously, attackers can also
modify the content of Baseline-PIM’s memory banks.
Encrypting data with authenticated encryption algorithms
(e.g., AES-GCM) protects encrypted data against direct tam-
pering by attaching an authentication tag to the encrypted
data. However, data inside memory is susceptible to splicing
and replaying attacks. The splicing attack replaces data from
one location with a valid encrypted data block from another
location. The replaying attack reverts a chunk of encrypted
data to a previously valid state. Both attacks trick the integ-
rity checking of authenticated encryption algorithms into
verifying that maliciously crafted data blocks have not been
tampered with.

4 SE-PIM ARCHITECTURE

The design of SE-PIM specifically mitigates the challenges
explained in the previous section. Our design brings imper-
ative changes for Baseline-PIM to overcome the unique
challenges in achieving its objectives. We explain each
architectural change and how they mitigate the challenges
in this section. We will further elaborate how a host enclave
uses SE-PIM through our programming model in Section 5.2.
A detailed security analysis of our design is presented in
Section 8.1.

Fig. 3. Challenges faced by Baseline-PIM. Encrypted data movement
between PIM local memory and the bank memory creates a perfor-
mance bottleneck (C1). Memory accesses by the host enclave can the
accessed address on the bus (C2). An adversary can also monitor the
memory content changes by quickly taking memory snapshots and com-
paring differences (C3). Data inside memory is also vulnerable to splic-
ing and replay attacks (C4).

Fig. 4. The memory throughput with and without software AES encryp-
tion on UPMEM PIM hardware.
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4.1 Overview

Fig. 5 shows the SE-PIM architecture. SE-PIM hardware design
contains modifications to the Baseline-PIM architecture
mentioned in Section 3.2 to protect the confidentiality and
integrity of in-memory computations.

In SE-PIM, an SE-PIMunit is included in each memory bank
present in the memory module. Each SE-PIM unit is equipped
with a PIM core, PIM local memory, DMA/AES engine and
DRAM lockdown unit. A memory bank is a unit of secure
computation In SE-PIM. Each memory bank is paired with
an enclave to provide exclusive and isolated computation
acceleration to the enclave. This means that a SE-PIM-enabled
memory module can be shared among multiple CPU
enclave instances, where each enclave will occupy one or
more banks in the module. Also, note that each memory
bank, when not used for confidential computation, can be
used as a regular memory space for non-enclavized threads
in the host.

The PIM core and local memory functions are similar to
that of Baseline-PIM. The AES/DMA engine introduces
hardware acceleration to the DMA engine, significantly
accelerating encrypted data transfers. The DRAM lockdown
unit enforces DRAM lockdown, a mechanism that prevents
unauthorized access to the protected data during confiden-
tial computation. The DMA/AES engine and DRAM lock-
down unit are hardware modules controlled by the PIM
core running SE-PIM kernel through MMIO registers. A
secure ROM that also functions as a cryptographic key stor-
age for is also introduced, which can be used by all SE-PIM
units within a memory module. ROM includes crypto-
graphic primitives (e.g., key pair generation, key signing)
and preprogrammed procedures (e.g., attestation) that serve
the commands.

4.2 Remote Attestation and Secure Communication
Channel

Each memory bank is made capable of remote attestation
and secure channel establishment through the per-bank SE-
PIM unit. More specifically, a secure ROM that (1) hosts code
for the attestation and key exchange, (2) functions as secure
key storage for the root endorsement key (KE) (the root of
trust) is made available for each memory bank. Such facili-
ties allow host CPU enclaves to attest and exchange a ses-
sion key with each memory bank.

Remote Attestation. Remote attestation allows a remote
challenger (e.g., the CPU-side enclave) to verify the authen-
ticity of the hardware by verifying SE-PIM’s certificate with a
certificate authority (CA). The host enclave first obtains the

SE-PIM unit’s certificate with the command GET_CERT. The
unit first generates an attestation public/private key pair
from KE inside the key storage. It signs the public attes-
tation key with the endorsement key and then writes it to a
memory buffer accessible by the enclave. The enclave then
verifies the certificate with the CA of SE-PIM (e.g., the manu-
facturer of SE-PIM). The public key is extracted from a veri-
fied certificate and used for key exchange.

Secure Communication Channel Establishment. After remote
attestation, the host enclave creates and shares a symmetric
session key with a SE-PIM unit to establish an encrypted chan-
nel for sending commands and parameters. The session key is
encrypted with the public attestation key and sent to SE-PIM as
the argument to the command SET_SESSION_KEY. The ses-
sion is used to encrypt all parameters sent to the parameter
channel. We will further describe how the channel is initial-
ized and used in Section 5.2. The host also shares a data encryp-
tion keywith SE-PIM using the command SET_DATA_KEY. The
data encryption key is used to encrypt and decrypt data
stored in memory to be processed by SE-PIM. The established
communication channel uses authenticated encryption, e.g.,
AES-GCM, to provide authenticity and integrity. Amonoton-
ically increasing counter is also used to achieve resistance
against replaying and indistinguishability ofmessages.More-
over, we employ fix-sized communication messages on the
channel to prevent side-channels.

Commands Authorization. The use of authenticated encryp-
tion on the parameter channel also prevents unauthorized
entities from issuing commands to SE-PIM. When a command
does not require parameters (e.g., LOCK_MEM) is used, the
host enclave encrypts and sends a nonce to the parameter
channel to be used by SE-PIM to authenticate the sender of the
command. The GET_CERT and DESTROY commands
(described in Table 2) do not require authentication. GET_-
CERT is used before the secure communication channel is
established. An unauthorized DESTROY command counts as
a denial-of-service and does not compromise the integrity
and confidentiality of SE-PIM’s execution.

4.3 Hardware Acceleration of Encrypted Data Flow

Since SE-PIM stores encrypted data inside the memory,
encrypted data flow is fundamental to our computation
model. However, the PIM core is a general-purposed proc-
essing core; it must operate on plaintext data. Hence, after
loading them into local memory, data from the memory
banks must be decrypted before processing. Furthermore,
the SE-PIM kernel might need to replace the old in-memory
data block with new data after computation, which requires
encryption. As we explained in Section 3.4, software-based
encrypted data movement between PIM and memory cre-
ates a substantial bottleneck in an evaluation on real PIM
hardware. Hence, we deem the inclusion of AES accelera-
tion essential for our system to function as an accelerator for
large data computation.

AES-Enabled DMA Engine.We propose the use of an AES-
acceleration-capable DMA engine. An ISA extension for
AES acceleration (e.g., x86 AES-NI) can improve the
encrypted data transfer performance. However, we argue
that it would consume a significant portion of the PIM core
cycles that could have been used for data computation.

Fig. 5. Overview of SE-PIM hardware architecture.
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Also, such a requirement creates an unnecessary constraint
in the PIM core design, which is commonly limited in proc-
essing power [41]. On the other hand, implementations of
AES-enabled DMA engines already exists [61], [62] and can
be easily incorporated into existing hardware due to its pre-
dictable power and area requirements. The introduction of
such an acceleration engine can be an indispensable compo-
nent in achieving confidential data-intensive computing.

We design the AES-enabled DMA engine as a hardware
module integrated with the PIM core through MMIO. The
PIM core configures the DMA engine with the keys (SES-
SION_KEY and DATA_KEY) obtained during secure channel
establishment with the host enclave. After, all data transfers
between the bank and PIM local memory by the DMA
engine are simultaneously encrypted/decrypted using the
shared keys. Data would arrive decrypted at the PIM local
memory from the memory bank and vice versa. We further
explain the details of the component and our simulation
methodology in Section 6.2.

4.4 Preventing Side-Channels and Tampering
During Computation

In this section, we elaborate on the components and their func-
tionality that help us overcome the challenges outlined in Sec-
tion 3.4 (C2, C3 and C4). We introduce two techniques to
Baseline-PIM, DRAM lockdown and controlled memory access
channel. DRAM lockdown allows the host enclave to disable
host-side accesses into the memory region containing data,
thus hiding the memory content changes leaked by the SE-PIM
kernel’s computation. We also eliminate the splicing and
replaying attacks by preventing unauthorized memory writes.
Our controlled memory access channel provides an interface
for the host enclave to performmemory accesses without leak-
ing the address side-channels. It accepts encrypted memory
requests through the parameter channel and let SE-PIM performs
the actual memory operation on behalf of the host enclave. The
channel hides access pattern leakages on the memory bus
when DRAM lockdown is active. We now go over the detailed
description of each technique.

4.4.1 DRAM Lockdown

Our DRAM lockdownmechanism efficiently addresses both
C3 and C4, by prohibiting access to data processed by SE-PIM

during PIM computation. We observe that most data move-
ments occur at the start of the PIM workload, where the
host loads data into the memory bank. After the initial data
transfer, the data rarely leaves the memory banks and is
commonly reused in-place by the PIM core. Moreover, the
same in-memory data can be processed by different PIM
kernels. Hence, the direct access to memory from the host
side can be safely disabled during PIM computation.

We now compare our solution with alternative designs.
Integrating ORAM algorithms (described in Section 2.2)
into SE-PIM’s processing core [47] could hide its memory
access pattern (C3), but would incur significant perfor-
mance degradation and complexity to our design [13],
[47]. Ultimately, using ORAM would render SE-PIM unus-
able as an accelerator for large data computation. To pro-
vide splicing and replaying protection (C4), a memory
verification engine that maintains a counter for each
encrypted memory block to guarantee its freshness could
be introduced [63], [64]. However, introducing such a
mechanism does not address C3, requires extra counter
storage, and would inadvertently introduce extra over-
heads for memory accesses [63], [64].

Based on the observations above, we conclude that deny-
ing host access to the memory regions containing data for
SE-PIM computation is essential to eliminate the memory con-
tent change side-channel (C3) while also providing protec-
tion against splicing and replaying (C4). We observe that
the placement of data into the memory banks only leaves a
sequential pattern with very little information to be leaked.
This is because the memory side-channels happen during
calculation due to a distinct pattern of behavior in the
code [9], [11], [14]. Hence, we allow the usage of direct
memory mappings to load data into the memory banks effi-
ciently. After data have been located inside memory, the
host enclave can request a lockdown of memory by sending a
LOCK_MEM command to the SE-PIM unit. SE-PIM, in turn, con-
figures the lockdown range registers in DRAM lockdown
unit only to allow access to the DMA-based secure commu-
nication channel, which is protected by authenticated
encryption. We describe the implementation of this mecha-
nism in Section 6. To remain functional as memory storage
during bank lockdown, we provide a data channel that
allows the host to send encrypted memory requests to SE-
PIM, which we describe in Section 4.4.2.

TABLE 2
Commands Supported by SE-PIM, Their Parameters, Results, and Descriptions

Command Parameters Results Description

GET_CERT
y - PIM_CERT Get SE-PIM’s certificate

SET_SESSION_KEY SESSION_KEY - Send encrypted session key to PIM
SET_DATA_KEY DATA_KEY - Send data decryption key to PIM
LOAD_KERNEL KERNEL_BINARIES LOCAL_MEM_MEASUREMENT Load PIM kernel
EXECUTE

*
FN_NAME, FN_ARGS RESULTS Command PIM to execute the kernel

LOCK_MEM - BANK_MEASUREMENT Enable DRAM lockdown
MEMCPY DST_ADDR, SRC_ADDR, SZ - Move data within the memory bank during

lockdown mode
ACCESS_DATA DATA, ADDR, SZ, OP DATA Data access during lockdown mode
UNLOCK_MEM - - Disable DRAM lockdown
DESTROY

y - - Stop SE-PIM execution, clear local memory
and unlock bank

* Parameters and results are defined by SE-PIM kernel; y does not require authentication.
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Bank Memory Integrity Measurement. Even with the lock-
down mechanism, the attacker could still perform tamper-
ing attacks (e.g., splicing and replaying) in the time window
between the data load and DRAM lockdown. We imple-
ment a memory integrity measurement to thwart such
attacks. Upon receiving the LOCK_MEM command, SE-PIM
takes the measurement of the data received and sends it to
the host enclave. The host enclave compares the measure-
ment to the precomputed hash value of the data to confirm
that it has not been tampered with. Measurement must be
performed every time the memory bank is unlocked for
data transfer, then locked to guarantee memory integrity.

4.4.2 Controlled Memory Access Channel

We introduce an interface for the host enclave to access the
memory bank during DRAM lockdown, called the controlled
memory access channel. The channel provides exclusive
access to only the authenticated entities (i.e., the host
enclave) while the DRAM lockdown is in effect. We adopt a
similar approach to the related works that build a secure
communication channel between the secure enclave and
memory [15], [16], [17]. We introduce the ACCESS_DATA

and MEMCPY commands for the host enclave to securely per-
form data access and movement (Table 2). The controlled
access channel has the access addresses, the size, and the opera-
tion of the memory request encrypted as parameters of the
new data access commands. Upon receiving the commands,
SE-PIM PIM core performs the actual data access based on the
command parameters on behalf of the enclave. Since the
DRAM lockdown mechanism already protects the access
pattern of the PIM core, memory accesses from the host
enclave performed through this interface are also resistant
against the address side-channel on the memory bus (C2).

Controlled Data Access. ACCESS_DATA allows the host
enclave to read or write a block of data during bank lock-
down while hiding the access pattern from observers.
Parameters for ACCESS_DATA are the encrypted data block,
the requested address, the size of access, and the type of
operation (read or write). Instead of introducing separated
commands for data read and write, we define the type of
access in the parameters to mimic the security guarantees of
oblivious RAM algorithms [45]. Fig. 6 shows the data access
from the host enclave using ACCESS_DATA. First, the
encrypted parameters are written into the DMA-based
secure channel, and the command is sent to the SE-PIM unit.
The SE-PIM unit will decrypt and fetch the memory request
into its local memory on receiving the commands. The data
block is placed in the requested location for a write request.
Otherwise, on reading requests, the SE-PIM unit fetches the
block, encrypts, and writes it to the secure channel. Collabo-
ration from the host enclave is required to achieve full
ORAM-like security properties. Namely, to hide the type of
memory access, the memory requests must contain dummy
data on a read, and a dummy read request must follow
every write request.

Controlled Data Movement. The MEMCPY command
instructs SE-PIM to copy data from one address to another,
which is useful when data is already located inside the
memory. On receiving the command, SE-PIM will fetch the
requested data block to local memory and write it to the

destination address. The operation performs data move-
ment using the fast internal bus on PIM, which reduces
expensive data transfers on the memory bus.

5 SE-PIM PROGRAMMING MODEL

In this section, we explain the programming model of SE-PIM.
Our programming model supports the two design objec-
tives of SE-PIM that we outline in Section 3.1: a secure mem-
ory extension and a secure large data accelerator for the
secure enclave. We elaborate the software components of SE-
PIM that help an enclave interact with SE-PIM in Section 5.1.
Then, we go through the design of our programming model
that enable our design objectives in Section 5.2.

5.1 Software Components

As the programming model of SGX enclaves does not sup-
port a trusted I/O path, the communication channel
between the enclave and the devices has to be set up by the
untrusted kernel and host application. Hence, there are
untrusted and trusted components in our software infra-
structure. Our trusted software includes the enclave host
program, the trusted SE-PIM user library, and the SE-PIM ker-
nel. Our untrusted components are the kernel driver and
the untrusted user library. The untrusted components only
set up the secure communication channel; after a secure ses-
sion is established, all communication between the enclave
and SE-PIM is encrypted and authenticated.

SE-PIM Driver and User Library. The user library and the
driver initialize the communication interfaces between the
host and the SE-PIM unit. The driver maps the physical
addresses corresponding to the memory banks in the SE-PIM-
enabledmemorymodules into the host kernel address space.
It also maps the registers of each SE-PIM unit to expose the
device control channel to the host. In order to provide access
to SE-PIM, the driver creates a virtual file interface to the host
library in the user space (e.g., /dev/pim0). A user library at
the host side is required to allow an in-host program to com-
municate and send workloads to a SE-PIM unit. The SE-PIM
library has two components, a trusted part that resides in the
enclave code and an untrusted part in the host program. The
untrusted part of the library initializes the communication
interfaces by obtaining the device driver’s memory banks
and control registers. The trusted library contains functions
that facilitate the communication between the enclave and

Fig. 6. An example of data read using controlled memory access chan-
nel. The data access pattern of host is protected by encryption, while the
data access pattern of PIM kernel is protected by DRAM lockdown.
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SE-PIM units (e.g., transfer data to the memory bank and send-
ing commands to SE-PIM).

Enclave Host Program and SE-PIM Kernel. The enclave host
program contains the confidential computation logic that
uses SE-PIM as its accelerator. SE-PIM kernel includes protected
functions to be executed inside SE-PIM. The developer of the
host enclave must select the computation (e.g., functions) to
be offloaded, then implement and cross-compile them for
SE-PIM. Similar to the interfaces of Baseline-PIM, host
enclave communicates with the SE-PIM kernel running on the
SE-PIM unit core through two physical interfaces (described
in Section 3.2): memory-mapped registers and direct memory
access (DMA). On the two interfaces, we establish two com-
munication channels. The command channel (CMD CH) use
the memory-mapped registers to issue commands (listed in
Table 2) to the PIM core to control its execution.

The parameters channel (PARAMCH in Fig. 2) uses DMA to
send parameters of the commands. It functions as a secure
communication channel between the host enclave and a SE-PIM
unit. Messages through the channel are encrypted using a
shared session key (SESSION_KEY) yielded during the initial
attestation and key exchange (Section 4.2). On EXECUTE com-
mands, the parameters become the arguments for execution
that are defined by the SE-PIM kernel.

5.2 SE-PIM Usage Model

Listing 1 demonstrates the code example of a host-side
enclave that uses a SE-PIM unit as an accelerator. We will use
the example in the remaining of this section to demonstrate
SE-PIM’s usage model.

Listing 1. Host-Side Code Snippet Illustrating Computa-
tion Offloading to SE-PIM

Initialization. The enclave first obtains an object represent-
ing a SE-PIM unit with the library function call SE_PIM_init
(line 4). The call performs remote attestation and key
exchange as described in Section 4.2, then offloads the
encrypted SE-PIM kernel to the SE-PIM unit. Note that if more
than a single SE-PIM unit is employed, the initialization func-
tion needs to be called for each SE-PIM unit identified by the
memory bank it belongs to (BANK_ID).

Extending Enclave Memory With SE-PIM . The user library
provides functions to offload data into the protection of SE-PIM

and access data without leaking data access patterns on the
memory bus. Its data loading function (line 6 of Listing 1)
uses directmemorymappings to efficiently load data into the
SE-PIM memory banks without compromising security. As we
discussed in Section 4.4.1, the act of sequential data loading
does not generate distinguishable access patterns. Further-
more, we observe in Section 7.2.2 that using the controlled
memory access channel that is side-channel resistant, would
inevitably create overheads for large data transfers. After the
initial transfer, the enclave commands the memory bank to
enter lockdown to protect the data insidememory (line 8).

After DRAM lockdown, data within memory is accessed
through the user library functions read(), write() and
memcpy(). The functions internally create encrypted mem-
ory requests to the controlled memory access channel (dem-
onstrated in Section 4.4.2), and let SE-PIM perform the actual
data access. Hence, the data access pattern is protected from
any observing attacker. In the example in Listing 1, the host
enclave use the function read() to read the incremented
data block from memory without leaking the requested
address and the type of operation (line 17).

Listing 2. SE-PIM Kernel Code Snippet Fetches Data
into Local Memory, Increments, Writes Updated Data to
Bank Memory, and Finally Returns the Results to the
Host Enclave

Offloading Confidential Computation to SE-PIM . Listing 2 dem-
onstrates the kernel logic used in Listing 1. After remote attes-
tation and key exchange, the encrypted SE-PIM kernel binary is
offloaded through the secure channel as the argument to the
command LOAD_KERNEL. The kernel is loaded into SE-PIM
local memory and used by the PIM core for execution. Then,
the PIM core takes the measurement (i.e., the hash) of PIM
local memory and sends the measurement to the host
enclave. The host enclave can use this measurement to verify
the initial state of a SE-PIM unit. After loading the PIM kernel,
the SE-PIM unit goes into an idle state and wait for future com-
mands (e.g., EXECUTE or LOCK_MEM).

SE-PIMmakes use of the zero-copymodel of PIM-based com-
putation, as described in Section 3.2. Data is not moved for
computation, but only the pointers to the data are embedded
in function arguments (SE_PIM_params_t). SE-PIM uses the
pointers to fetch the actual data from the bank memory into
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its local memory and perform the requested operation on the
data. This eliminates the data transfers for each computation
and makes use of the fast internal bus of PIM systems [38],
[39]. Moreover, the computation does not leave any pattern
on the memory bus. This is only possible on PIM-based com-
putation since CPUs, or any accelerators on the peripheral
bus, inevitably access memory with patterns unless using
ORAM primitives. To command a SE-PIM unit to execute the
kernel, the host sends the encrypted parameters through the
encrypted parameter channel; then sends an EXECUTE com-
mand to the corresponding SE-PIM unit. After execution, SE-PIM
kernel encrypts and returns the execution results to the
enclave through the same encrypted channel (line 16).

Supporting Even Larger Data Computation. The above SE-PIM
usage model can be repeated to compute data larger than
the maximum capacity of SE-PIM-enabled memory module.
Similar to the usage of other types of accelerators (e.g.,
GPUs), the workload can be split into batches to compute
data larger than finite memory capacity. Once a batch of
workload has finished, the host enclave may save the
encrypted batch output to a larger normal DRAM space,
unlock the SE-PIM bank and proceed with the next batch.

6 IMPLEMENTATION

We implemented a prototype of the SE-PIM design using a
cycle-accurate full system simulation [65]. Regarding the
low-level simulation configurations, we referenced well-
documented industry-grade products [26] and simulation
configurations from other works on PIM [16], [27], [29],
[30]. Our simulation is well modularized and generalizable;
the hardware components that we implement can be easily
modified and provides well-defined APIs for writing host-
side and PIM-side applications.1

6.1 PIM Core and ROM

The PIM cores are general-purpose execution cores that use
the local memory as their RAM and have low-latency access
to the memory banks. The specifications for the cores are
described in Table 3. Fig. 7 demonstrates the address space
of the PIM core and the memory mapping of the compo-
nents into the address space. Local memory is mapped
into the address space of SE-PIM as a contiguous memory
region, which it uses as the memory space for the SE-PIM
kernel, the stack space, and DMA transfers. The registers
of the AES-enabled DMA engine and the DRAM lock-
down unit are memory-mapped to fixed addresses so that

the PIM core can configure and send commands to the
components.

ROM contains the code for cryptographic primitives (e.g.,
key generation) and functions for handling the commands.
The list of supported commands is demonstrated in Table 2.
Our prototype implements ROM code directly inside the
PIMkernel code and loads it to the localmemory. Thiswould
simplify the implementation while achieving the same func-
tionality and performance characteristics. ROM must be
implemented in a separated read-only memory module to
protect the security-sensitive code against tampering in an
actual implementation. Moreover, PIM core should be
implemented so that only the attestation code can access the
key storage containing the root endorsement key to prevent
key leakage. As noted by [66], the requirement can be easily
enforced with an introduction of a hardware monitor on a
PIM core’s program counter that only allows access to the
KE when the PC is within the attestation code.

6.2 AES-Capable DMA Engine

We implemented and incorporated the AES-GCM accelera-
tion capability in the DMA engine of the PIM core package.
Our strategy in incorporating a hardware design into the
simulation was two-track: we first modified the DMA
engines in the memory controller of the PIM core package
to include AES-GCM acceleration hardware to test the cor-
rectness aspect. Then, we calculated the increased number
of cycles consumed for each DMA transfer by inspecting
the specifications of AES hardware specifications.

Functional Correctness. We implemented AES functional-
ity in the memory controller and its DMA engine of each
PIM core. The implementation is based on open hardware
IPs [61], [67] and uses functions from the OpenSSL library.
We expose the configuration registers for various configura-
tion parameters and commands by mapping them into the
PIM core address space (Fig. 7). Through the commands,
the PIM core can specify whether the direction of data
indicates whether decryption or encryption should be per-
formed; decryption is used to transfer from the memory

TABLE 3
Configuration of the Simulated System

Simulation Configuration

Host CPU 8 in-order ARMv7 cores (2 Thr/core, 4.0 GHz)
CPU Cache L1: Per-core, 32KB I-cache, 64KB D-cache, LLC: Shared across cores, 256 KB
OS Linux kernel 3.16.0-rc6
Memory 8 PIM-enabled memory banks, 64 MB/bank, Memory type: gem5 HMCVault

PIM Cores 1 � in-order ARMv7 core/bank (1 thread/core, clock rate 1 GHz), 1 MB local memory/core

Fig. 7. The address space of a PIM core. The control registers of the
DRAM lockdown unit and the AES-enabled DMA engine is mapped into
the address space of the PIM core for MMIO communication.

1. We plan to make our simulation public after the publication of
this work
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bank into PIM local memory bank and vice versa. The
DMA engine also uses different encryption keys (SES-
SION_KEY or DATA_KEY), depending on the command.
Upon receiving a command from the PIM core, the DMA
engine initiates the transfer, then encrypts or decrypts the
contents appropriately. Listing 3 demonstrates the function
sepim_dma() that use the AES-capable DMA engine for
encrypted data movement.

Listing 3. The Definition of sepim_dma Inside a SE-PIM
Kernel. The Function Uses the Control Registers of the
DMA/AES Engine Mapped into PIM’s Address Space

Simulating Latency. The performance overhead of incor-
porating AES-GCM acceleration into DMA engines is well-
studied and can be accurately estimated. We adapt the
latency described in the specification of the IP [67]. Also,
previous works have estimated the latency of almost identi-
cal hardware [15], [16]. We estimated that the AES-GCM
accelerator can operate at a 300MHz clock rate and could
encrypt 128-bit blocks each cycle. Based on the estimation,
we add a delay of 1 cycle to each 16 bytes data chunk proc-
essed by the DMA engine in our simulation.

6.3 DRAM Lockdown Unit

We discuss the implementation of the DRAM lockdown unit
in different PIM architectures. For 3D-stacked memory, the
implementations often use packetized interfaces that replace
the traditional low-level DDR commands [15], [38], [68].
Hence, inserting the logic for denying access to a region
inside memory is straightforward. Many works have taken
advantage of the flexibility of 3D-stacked memory to incor-
porate authenticated encryption into the packet handling
logic [15], [16]. Therefore, we expect our proposed logic
change that implements DRAM lockdown can be easily
incorporated into 3D-stacked PIM hardware. On the other
hand, it is more challenging to implement a filtering mecha-
nism on DIMM-based memory since the DDR interface is
very sensitive to timing differences [69]. Hence, we focus on
the 3D-stackedmemory-based implementation in this work.

Simulating DRAM Lockdown. To simulate DRAM lock-
down, we introduce an address filtering mechanism into the
packet handling logic of the memory. Wemapped two regis-
ters, address start and address mask to the address space of a
PIM core, which it can use to configure the protected address
range (Fig. 7). The address start register specifies the start of
the protected address range. The address mask register is
combinedwith the address start register to specify the upper
bound of protected addresses. In our simulation, we made
modifications to the AbstractMemory object in gem5, which
is an abstraction of the memory-side memory controller. As
AbstractMemory uses packets to interact with other

components, its functionality is similar to how the logic layer
of 3D-stackedmemories handles the requests.

7 EVALUATION

We perform evaluations to show vital aspects of our design:
first, offloading computations to SE-PIM leaks no address-
based side-channels on the bus. Second, our introduced
modifications do not inhibit PIM’s ability to perform data-
intensive computation efficiently. Finally, we demonstrate
SE-PIM’s benefits as enclave extended memory. We first show
the lack of bus traffic side-channel in Section 7.1. We per-
form a set of microbenchmarks to evaluate the performance
of encrypted data movement and the secure memory access
interface in Section 7.2. Lastly, we evaluate the data-inten-
sive computation performance of SE-PIM-assisted confiden-
tial k-mean clustering application in Section 7.3.

Evaluation Setting. We evaluated SE-PIM through a cycle-
accurate simulation. The simulation configuration we used
for simulating our system can be found in Table 3. On the
host system, we allocate 8 cores with a clock rate of 4 GHz
throughout our experiments, for this configuration is suffi-
cient to fully saturate the host memory bandwidth. On the
PIM side, we configure each memory bank to have 64 MB of
memory, and the PIM cores to operate at the clock rate of 1
GHz to reflect the power and area constraint in the DRAM
or 3D-stacked memory packages. The timing parameters
used for the simulation were determined through existing
works that conducted simulations on similar hardware [27],
[29], [70].

Listing 4. Dictionary Word Lookup Function Used for
Memory Access Pattern Analysis

Note that there might be discrepancies between our simu-
lation setup and a real hardware implementation.We discuss
in details some of such possible differences in Section 8.2.

7.1 Memory Access Pattern Analysis

We set up an experiment that imitates the off-chip bus
snooping attack illustrated in Membuster [11], which dem-
onstrates that bus snooping can undermine the confidential-
ity of processor enclaves through memory access pattern
analysis on the bus traffic. We use a minimal hash table
lookup that mimics the attack examples on the hunspell

dictionary program shown in Membuster. Each entry in the
hash table stores a hash key and an integer value in the place
of the word’s definition for simplicity. The attack illustrates
how the address side-channel observable on the bus can
reveal the behavior of the seemingly protected computation.

2484 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023



We implemented a search() function that takes a string as
an argument. The argument is hashed using the Murmur3
hash algorithm, then used as an index to the hash table. The
exact operation of search() is defined in Listing 4.

The original attack from [11] requires that the host
enclave caches are constantly flushed to yield reliable and
distinct access patterns on the bus. We adapted the same
premise for our experiment. However, since the gem5 x86
CPU model does not correctly simulate the cache flush
instructions (e.g., clflush), we implemented a function that
forces cache flush by repetitive memory accesses and used
it after each hash table access to preventing caching. In the
host-only setup, which represents a case where the host pro-
cessor enclave is used to protect the hash table, we place the
hash table inside a single memory page so that it is contigu-
ous in physical memory. Then, we obtain the virtual to
physical mapping of the program from /proc/process

pidpagemap. For the PIM-assisted version of the program,
the hash table is stored in the PIM memory bank, and a PIM
kernel that performs hash table lookups is loaded into the
PIM processor local memory. We leverage our simulation
framework to place a memory tracing unit between the L2
cache and DRAM (i.e., the memory bus) to collect the
accessed physical addresses. Fig. 8 illustrates the memory
access pattern observed on the bus – by the attacker who is
snooping on the bus traffic – in host processor execution
and SE-PIM-assisted execution. Fig. 8a shows the memory
access pattern recorded during the execution of the host-
only version of the test program, and Fig. 8b shows that of
the SE-PIM-assisted version (psearch()). The memory
writes are denoted by � and reads by �.

Results. In the CPU-only version, with pre-obtained
knowledge on the addresses of the functions and data of the
program, the adversary learns that search() has been exe-
cuted and in-memory dictionary locations, such as hasht-
able[7], hashtable[237] are accessed. Eventually, they
can infer the queried words by looking at the bus traffic. On
the other hand, the PIM-assisted version shows only the com-
munication with PIM. The PIM command channel and
parameter channel are fixed single-channelmemory-mapped
I/O channels. The host program first writes the parameter
(e.g., ”apple” to the parameter channel, then writes the
command number that corresponds to the PIM function
search() in the PIM kernel to the command channel to
invoke the offloaded task. These patterns are identical to all
PIM kernel invocation, regardless of the invoked function
and parameters. This example clearly shows the security
advantages of SE-PIM against side-channel attacks that target

the bus traffic. We further discuss the security of SE-PIM in a
more comprehensivemanner in Section 8.2.

7.2 Microbenchmarks

We measure the performance of encrypted DMA transfer
and the secure memory access interface with our microbe-
nchmarks. The results suggest that encrypted DMA transfer
would incur only minor overhead in each transfer, and the
throughput of the controlled memory access channel would
scale with the transfer size.

7.2.1 Encrypted DMA Transfers

We evaluate the overhead of encrypted data movement
between PIM local memory and the memory bank, when
accelerated by the hardware AES engine. The average
throughput of the operation is also evaluated. For both
PIM-baseline and SE-PIM, we measured the access time for
the following cases: 1. in both directions (local-to-bank and
bank-to-local), 2. sequential and random accesses and 3. for
varying block sizes. Note that since we compare the latency
of AES-accelerated DMA transfer against DMA transfer
without encryption, the difference in performance between
the two would also precisely demonstrate the performance
cost of using AES-GCM in SE-PIM.

Results. Fig. 9 illustrates the average access time mea-
sured for 1000 DMA accesses in each configuration. The
access time for random and sequential access is roughly
similar because there is no cache on PIM that incurs varia-
tions in access time. Our simulation results report an aver-
age of 22.35% increase in access time due to the AES-
capable DMA engine. The measured overhead is in line
with the previous works that simulated the performance
overhead of hardware AES support [15], [16]. We further
investigated the throughput for data transfer between the
memory bank and local memory. The DMA maximum
throughput of moving data with the AES-capable DMA
engine is compared to that of without encryption in PIM-
Baseline. Overall, the AES-enabled DMA engine produces
an average throughput of 2.9 GB/s, compared to 3.53 GB/s
for unencrypted DMA accesses.

Our experiments show that SE-PIM’s AES acceleration ren-
ders encrypted data transfers via DMA feasible for large
data computation.When compared to the overhead incurred
from software encryption that we demonstrated in Sec-
tion 3.4, encrypted data transfer between the memory bank
and SE-PIM local memory is no longer the bottleneck. This is
further confirmed in our application performance evaluation

Fig. 8. Memory access pattern observed on bus during confidential hunspell dictionary program. In host CPU enclave-only model, accessed
hashtable location reveals looked up word. In SE-PIM-assisted model, observed memory pattern is consistent for all looked up words.
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in Section 7.3, where SE-PIM is only marginally slower than
Baseline-PIM.

7.2.2 Controlled Data Access Throughput

We measure the throughput of data access on different
block sizes, performed through the controlled data channel
(Section 4.4.2) and compare it to the throughput of normal
DRAM access to the memory. Additionally, we also mea-
sure the throughput of Path ORAM [45], one of the fastest
and most common ORAM algorithms for comparision.

Results. Fig. 10 illustrates the results of the evaluation.
Only read accesses are shown since the performance of read
and write accesses is almost identical. The throughput of
normal memory access is roughly the same among different
block sizes, about 1300 MB/s. The results show that when
small block sizes are used, a large proportion of the over-
head comes from the communication channels (e.g., the
MMIO accesses for writing commands), which significantly
degrade the throughput of the controlled memory access
channel. For instance, the throughput of 1 KB block accesses
is 127� lower than normal memory accesses.

Interestingly, the throughput of SE-PIM’s controlled mem-
ory access increases when increasing block sizes are used,
362.7 MB/s for 64 KB blocks and 504.2 MB/s for 128 KB
blocks, while the throughput of Path ORAM decreases. This
suggests that using larger block sizes for controlled memory
accesses leads to better performance. Despite having a
lower throughput than direct memory access, the interface
is faster than most ORAM implementations (Path ORAM
achieved less than 1 MB/s throughput in our evaluation).
Since most of the data is already placed inside memory
for PIM computation, we expect the controlled memory
accesses not to be a bottleneck in PIM workloads.

7.3 Protected Data-Intensive Computation
Performance

To evaluate the performance of SE-PIM on real-world work-
loads, we implement a confidential k-mean clustering appli-
cation powered with SE-PIM and compare its performance
with an implementation on the baseline PIM. k-mean

clustering is a standard algorithm in data analytics that
aggregates data points into clusters. The application
requires a large amount of data movement, making it a
prime candidate for PIM-based accelerator [71], [72]. In our
confidential k-mean clustering, the adversary observing the
computation offloaded to SE-PIM learns no information.
Moreover, our system allows the host enclaves to process
data larger than the memory limitation of SGX-based
enclaves (96 MB). When 8 SE-PIM-enabled memory banks are
used, up to 512 MB of data can be processed concurrently.
As more SE-PIM units are employed, more data can be
processed.

Results. Fig. 11 demonstrates the performance of execut-
ing a round of k-mean on SE-PIM in comparison to executing
the same algorithmon the Baseline-PIM. We alsomeasure
the algorithm’s performance on the CPU (without PIM assis-
tance) on similar data sizes for comparison. The specification
of the CPU is described in Table 3. The total runtime of SE-
PIM’s confidential k-mean on encrypted data has negligible
overhead to the baseline model without encryption. The
results also show that as the data set sizes increase, the over-
head of SE-PIM over Baseline-PIM also decreases. On aver-
age, the execution time of the confidential k-mean algorithm
incurs 0.075%, 0.079%, 0.09%, 0.11% overhead compared to
the insecure version when 1, 2, 4, and 8 PIM cores are used,
respectively. Moreover, our system attains speed up in exe-
cution time compared to performing k-mean only with the
CPU. The CPU-only computation on 8 CPU cores does not
scale well to the increasing data set sizes due to the saturated
memory bandwidth. In contrast, the SE-PIM cores benefit from
a much higher bandwidth within a memory module. SE-PIM
outperforms the CPU-only k-mean when more than 4 PIM
cores are used. When processing 512 MB of data with 8 PIM
cores, SE-PIM achieves 3:61� speed up to just using the CPU,
with the execution time of 17.6 seconds (0.05%more than the
baseline-PIM version). Note that the application’s execution
time on the CPU is optimistic in our evaluation. We do not
consider the overhead of EPC swapping due to extensive
memory usage, which can incur up to 1000� performance
degradation in some applications [13], [73].

8 SECURITY ANALYSIS AND DISCUSSION

In this section, we provide an in-depth security analysis of
SE-PIM in a more formal manner.

8.1 Security Analysis

We revisit the security guarantees of SE-PIM through a point-
by-point assessment of the SE-PIM’s security objectives. The
analysis is structured as the following: For each Objective N,
we discuss the supporting Properties N.M from our design
that directly contributes to achieving the objective.

Fig. 9. Access latency of SE-PIM’s AES-encrypted DMAversus Baseline-PIM without encryption.

Fig. 10. Throughput of the controlled memory access channel on differ-
ent block sizes in log-scale, compared against normal DRAM accesses
and Path ORAM accesses.
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Objective 1. The communication channel establishment between
SE-PIM unit and host CPU enclave is secure.

Property 1.1. The endorsement key KE is only known to the SE-
PIM core.

The security of remote attestation and key exchange KE

depends on the fact that the root endorsement key (KE) is
never leaked outside the memory bank package. A new
attestation key pair is derived using the KE at each invoca-
tion of GET_CERT. Moreover, only a very limited number of
instructions in the attestation and key exchange procedures
interact withKE as described in Section 6.1.

Property 1.2. Attestation and key exchange procedures are
immutable.

ROM in each SE-PIM unit ensures the immutability of the
procedures for attestation and key exchange. During secure
communication channel establishment, the procedures are
copied into PIM local memory for execution. The attestation
procedure itself measures (i.e., through hashing) the PIM
local memory contents and presents it to the host enclave.
This way, the host enclave can verify that the initial state of
the PIM-side execution is trustworthy by comparing the
provided hash against a known-good hash value.

Objective 2. Communication between SE-PIM unit and host CPU
enclave leaks no information about the exchanged messages.

Property 2.1. All commands and parameters are delivered to
secure channel with fixed MMIO addresses.

SE-PIM ensures that all communication messages have a
fixed size, are encrypted and delivered to fixed MMIO
addresses. This means that the communication between a
SE-PIM unit and host CPU enclave always has the identical
destination address throughout the session. Our experiment
results presented in Section 7.1 precisely confirms this secu-
rity property.

Property 2.2. Commands and parameters are encrypted in indis-
tinguishable way using AES-GCM encryption.

The data part of the bus packet P that contains com-
mands and parameters is encrypted with AES-GCM
(counter mode). Therefore, each encrypted messages, even
when the contents are identical, are indistinguishable to the
observers.

Objective 3. Confidentiality and integrity of data in stationary
state inside SE-PIM memory bank is guaranteed

Property 3.1. Protected data is always encrypted inside SE-PIM
memory bank.

Our design choice was to keep the data residing in the
memory bank encrypted, even with the new capability to
drop access to the memory bank. An adversary with physi-
cal access to the memory module may launch a cold boot
attack to dump the memory contents in the memory bank,
but would only obtain encrypted values.

Property 3.2. The integrity of initial data is verifiable by the host
enclave through bank memory measurement.

After the host enclave transfers the initial data into SE-
PIM’s memory bank, SE-PIM’s memory lockdown prevents
further modification to in-memory data. A bank memory
integrity measurement (the hash checksum) (Section 4.4.1)
is performed and notified to the enclave. Then, the host
enclave compares the memory measurement with the
known checksum to ensure that data has not been tampered
with.

Objective 4. SE-PIM’s controlled memory access leaks no infor-
mation about the access.

Property 4.1. The whole controlled access request (Access A =
(addr, op, size, data)) is encrypted.

The controlled access channel uses the secure communi-
cation channel whose security we demonstrated in Objec-
tive 2, so it inherits all of its security properties. By
encrypting every information related to the access, the
accesses are indistinguishable from any adversaries that
observe the bus packets.

Property 4.2. SE-PIM’s lockdown prevents all host software or
hardware from directly accessing memory bank.

The lockdown mechanism prevents the attackers from
accessing the memory bank, preventing any information
leakages from attacker looking for memory content changes.

Property 4.3. Data transfer only occurs within the memory bank
(i.e., no main bus transactions).

The controlled access offloads the actual memory access
to the PIM core to use the internal connection between PIM
and memory that is assumed to be secure from probing.
Therefore, no bus transaction is generated from controlled
accesses.

Objective 5. Confidentiality and integrity of data inside SE-PIM
memory bank during computation is guaranteed.

Fig. 11. The execution time of confidential k-mean using SE-PIM against the baseline PIM and CPU-only versions (8 CPU cores, without data encryp-
tion). SE-PIM overhead over the baseline PIM and the performance numbers of using different numbers of PIM cores are measured.
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Property 5.1. SE-PIM’s lockdown prevents all host software or
hardware from directly accessing memory bank.

The execution of a SE-PIM kernel might perform memory
updates that reveal its access pattern to attackers that scan
the memory. DRAM lockdown prevents attackers from
observing such information.

Property 5.2. Data transfer only occurs within the memory
bank.

During computation, there is no bus packet between the
host CPU and SE-PIM memory bank induced from the data
computation, thanks to the inherent efficiency of PIM-based
computation. The adversary observing the main bus can not
obtain any information regarding the computation.

Property 5.3. Computed data is only decrypted inside PIM
local memory.

SE-PIM’s AES-enabled DMA encrypts data flow from
PIM local memory to the bank and decrypts in the reverse
direction. Hence, the plaintext form of the computed data
can only reside in the PIM’s local memory. As we stated in
Section 3.3, we assume that the SE-PIM unit and memory bank
hardware are secure; the adversary cannot physically probe
the PIM’s local memory tightly integratedwith the silicon.

Summary. Our security analysis outlined the security
objectives achieved through the design properties of SE-PIM.
We revisit the challenges for confidential PIM-based compu-
tation (C1-C4) to conclude our security analysis. First, C1
(Performance overhead of encrypted data transfer in PIM) is
addressed by SE-PIM’s AES-capable DMA Engine and exten-
sively evaluated through benchmarks (Section 7). C2
(Address side-channel on the bus) is addressed by the combi-
nation of Objective 2, and Objective 4. The two objectives
eliminate the leakage of information in the PIM-CPU com-
munication that is encrypted by Objective 1. Both objectives
are achieved through using a secure fixed channel over the
bus, whose effect is well illustrated in Fig. 8. Objective 3 and
Objective 4 directly address C3 (Memory content change
side-channel); DRAM lockdownprevents attackers from tak-
ing snapshots of the memory to infer the content changes,
while Objective 4 provides exclusive memory access to the
CPU enclave. Lastly, C4 (Splicing and replaying attacks) are
addressed by Objective 3 and Objective 5 such that the data
inside PIM memory banks are protected both when it is sta-
tionary (Objective 3) data and in-computation (Objective 5).
In all, SE-PIM’s design addresses all the challenges that we out-
lined in Section 3.4 and provides performant and confidential
PIM-assisted computation when satisfied.

8.2 Discussion

Supporting Cross-Bank Communication. In our current design,
memory banks inside SE-PIM-enabledmemorymodules do not
communicate or share resources. A PIM core can only access
its localmemory and bankmemory (i.e., it cannot access other
bank memory). Hence, no hardware connections can be
exploited to create side channels between PIM cores. Such
strict separation prevents security risks from malicious co-
tenants who have access to one or more SE-PIM banks. Being
the first to explore confidential computing inside PIMs, our
design focuses on maintaining the confidentiality of the

computation. We expect that secure communication between
PIM banks can enable more flexible forms of computation
inside PIM [27].

Rowhammer Attacks and Physical Side-Channels. Mitigation
of Rowhammer and physical (e.g., electromagnatic) side-
channel mitigation is largely a still open field, and many
works are exposing new attacks and proposing mitiga-
tions [57], [74]. Rowhammer attack [56] exploits inadvertent
flipping of bits in DRAM during frequent and repeated
memory accesses. DRAM bank in SE-PIM hosts confidential
data. However, SE-PIM maintains the in-DRAM data is
always encrypted with AES-GCM, which includes data
integrity. Therefore, we expect that the impact of Rowham-
mer would be limited on SE-PIM. Moreover, the recently man-
ufactured DRAM modules are devoid of the Rowhammer
issues. For this reason, future DRAM-based PIM hardware
with SE-PIM is unlikely to be affected by Rowhammer. Elec-
tromagnetic [58] and power side-channels [59] stem from
the distinguishable physical effects of a processor when
processing different data types or performing different
operations. Existing works have explored circuit-level
defenses that normalize or randomize the physical effects of
the computation [74]. We consider the integration of such
defenses into SE-PIM as future work.

Limitations of Cycle-Accurate Simulation. Our simulation
setup might differ from an actual hardware implementation
in a few aspects. First, we assume the presence of processor
enclaves in the host, as our simulator does not support sim-
ulation of enclaves such as SGX [7] or TrustZone [75]. For
this reason, we did not consider the overhead from the use
of host processor enclaves, although the exclusion of the
overhead works against our favor. Second, we only simulate
the functional correctness of the DRAM lockdown unit; it is
rather challenging to accurately simulate the latency of such
a low-level mechanism in a simulator or even FPGAs. We
leave actual hardware implementation and verification of
the DRAM lockdown unit as future work.

9 CONCLUSION

We presented SE-PIM, an architecture that enables confiden-
tial computing inside memory by retrofitting the processor-
in-memory architecture. Through a careful security analysis
of the new architecture, we proposed a set of non-intrusive
yet imperative changes that guarantees the data’s confi-
dentiality and integrity computed inside PIM. We evaluated
our design and a proof-of-concept application for our
design using a cycle-accurate full-system simulation. Our
evaluation shows that the encrypted data transfer in our
design only incurs a 17:85% overhead in the maximum
throughput inside memory compared to the unmodified
PIM architecture that does not support encryption. We also
evaluated a confidential k-mean program that runs on our
architecture to accelerate data-intensive operations. We
observed only 0.05% increase in total execution time on the
most significant data size compared to offloading to the
unprotected PIM architecture.
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